簡易檢索 / 詳目顯示

研究生: 林宸禕
Lin, Chen-Yi
論文名稱: 電遷移對錫銀銅鎳銦五元銲錫合金及鎳基材間界面反應行為之影響
The Effect of Electromigration on the Interfacial Reaction between Sn-Ag-Cu-Ni-In Alloy and Ni Substrate
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 無鉛銲錫鎳層界面反應電遷移
外文關鍵詞: Lead-Free solder, Ni Layer, Interfacial reaction, Electromigration
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係探討錫銀銅鎳銦五元銲錫合金與鎳基材於2.6x103、5.2x103A/cm2電流密度及環境溫度100oC、120oC及150oC,經長時間通電之後,其界面反應行為,藉分析介金屬化合物之厚度成長與鎳層厚度消耗,推測介金屬化合物成長機制以及鎳層消耗機制。
    本實驗之結果顯示於150oC及5.2x103A/cm2,其生成之界面介金屬化合物隨時間的變化最為明顯,初期陰極端界面處僅生成介金屬化合物(NiCu)3Sn4,經長時間通電,局部鎳層出現快速消耗之現象,位於鎳層消耗處的介金屬化合物轉變為(CuNi)6Sn5。陽極端亦發生相轉換,介金屬化合物由單一相(NiCu)3Sn4轉變為(NiCu)3Sn4及(CuNi)6Sn5共存於界面處。介金屬化合物的成長機制及鎳層的消耗機制受環境溫度及電流密度影響而改變,溫度升高,其成長機制與消耗機制將趨向於擴散反應控制;若電流密度增加則其機制將趨向界面反應控制。

    The present study investigated the interfacial reaction between SnAgCuNiIn solder and the nickel substrate at 2.6x103 and 5.2x103A/cm2 current densities and environment temperatures of 100oC, 120oC and150oC. The mechanisms of the formation of interfacial intermetallic compound (IMC) and the nickel consumption were investigated through the measurement of the thickness variation of the intermetallic compound and Ni layer. The behavior of IMC formation was found to be strongly affected by the reation time at 150oC and 5.2x103A/cm2. The initial IMC formed at cathode was (NiCu)3Sn4 which convert to (CuNi)6Sn5 at the location where the Ni is rapidly consumed. The IMC formed at anode was also found to experience transformation from (NiCu)3Sn4 to coexistence of (NiCu)3Sn4 and (CuNi)6Sn5. The environment temperature and current density will affect the mechanisms of the IMC formation and Ni consumption. Both mechanisms tend to follow diffusion control with increasing temperature. However the mechanism tends to become interfacial reaction control with current density increase.

    中文摘要I AbstractII 致謝III 總目錄IV 表目錄VI 圖目錄VII 第壹章緒論1 1.1電遷移原理介紹1 1.2界面的反應行為6 1.2.1電遷移造成的界面反應行為10 1.2.2界面反應的動力學行為11 1.3鍍層的種類13 1.4實驗動機及目的17 第貳章實驗方法與步驟18 2.1實驗構想18 2.2實驗試片之準備 18 2.2.1銲錫材料選用 18 2.2.2金屬基材之前處理及電鍍鎳層18 2.2.3試片之迴焊條件19 2.3通電實驗19 2.4界面反應行為之觀察20 第參章結果與討論26 3.1通電促成之錫銀銅鎳銦銲錫合金與電鍍鎳層界面反應行為26 3.1.1於100oC環境溫度下之界面反應行為26 3.1.2於120oC環境溫度下之界面反應行為38 3.1.3於150oC環境溫度下之界面反應行為47 3.1.4綜合討論61 3.2反應層之成長動力學69 3.2.1界面化合物之成長動力學69 3.2.2電鍍鎳層之消耗動力學78 3.2.3綜合討論84 第肆章結論87 參考文獻89

    1.V. B. Fiks, On the Mechanism of the Mobility of Ions in Metals, Soviet Physics Solid State, 1959, 1, p. 14.
    2.J. R. Black, Electromigration : A Brief Survey and Some Recent Results Electron Devices, IEEE Transactions on, 1969, 16(4), pp. 338-347.
    3.I. A. Blech, Electromigration in Thin Aluminum Films on Titanium Nitride, Journal of Applied Physics, 1976, 47(4), pp. 1203-1208.
    4.I. A. Blech, and K. L. Tai, Measurement of Stress Gradients Generated by Electromigration, Applied Physics Letters, 1977, 30(8), pp. 387-389.
    5.I. A. Blech, and C. Herring, Stress Generation by Electromigration, Applied Physics Letters, 1976, 29(3), pp. 131-133.
    6.H. B. Huntington, and A.R. Grone, Current-Induced Marker Motion in Gold Wires, Journal of Physics and Chemistry of Solids, 1961, 20(1-2), pp. 76-87.
    7.J. V. Ek, and A. Lodder, Electromigration of Hydrogen in Metal, Defect and Diffusion Forum, 1994, 115, pp. 3-4.
    8.H. B. Huntington, Diffusion in Solids : Recent Developments, ed. A. S. Nowick and J. J. Burton, New York: Academic Press, 1975.
    9.K. N. Tu, Electromigration in Stressed Thin Films, Physical Review B, 1992, 45(3), p. 1409.
    10.T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1986, 1, p. 965.
    11.K. N. Tu, Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films, Acta Metallurgica, 1973, 21(4), pp. 347-354.
    12.K. N. Tu, and R. D. Thompson, Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films, Acta Metallurgica, 1982, 30(5), pp. 947-952.
    13.K. N. Tu, Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case, Materials Chemistry and Physics, 1996, 46(2-3), pp. 217-223.
    14.S. Bader, W. Gust, and H. Hieber, Rapid Formation of Intermetallic Compounds Interdiffusion in the Cu-Sn and Ni-Sn Systems, Acta Metallurgica Et Materialia, 1995, 43(1), pp. 329-337.
    15.S. K. Kang, R. S. Rai, and S. Purushothaman, Interfacial Reactions during Soldering with Lead-tin Eutectic and Lead (Pb)-Free, Tin-Rich Solders, Journal of Electronic Materials, 1996, 25(7), pp. 1113-1120.
    16.J. O. G. Parent, D. D. L. Chung, and I. M. Bernstein, Effects of Intermettallic Formation at the Interface between Copper and Lead Tin Solder, Journal of Materials Science, 1988, 23(7), pp. 2564-2572.
    17.H. K. Kim, and K. N. Tu, Rate of Consumption of Cu in Soldering Accompanied by Ripening, Applied Physics Letters, 1995, 67(14), pp. 2002-2004.
    18.M. Oh, Doctoral Dissertation, Lehigh University, 1994.
    19.P. Borgesen, and D. W. Henderson, Fragility of Pb-Free Solder Joints, White paper, 2004.
    20.C. Chiu, K. Zeng, K. Stierman, D. Edwards and K. Ano, Effect of Thermal Aging on Board Level Drop Ralibility for Pb-Free BGA Packages, 54th ECTC Conference, 2004.
    21.T. B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1986, 2, p. 1759.
    22.T. B. Massalski, Binary Alloy Phase Diagrams, second ed., ASM International, Ohio, 1990.
    23.T. Laurila, V. Vuorinen, and J. K. Kivilahti, Interfacial Reactions between Lead-free Solders and Common Base Materials, Materials Science & Engineering R-Reports, 2005, 49(1-2), pp. 1-60.
    24.S. Kim, and D.C. Johnson, Control of Ni-Sn Interfacial Reactions through Reactant Design, Journal of Alloys and Compounds, 2005, 392(1-2), pp. 105-111.
    25.M. He, A. Kumar, P. T. Yeo, G. J. Qi, and Z. Chen, Interfacial Reaction between Sn-Rich Solders and Ni-Based Metallization, Thin Solid Films, 2004, 462-463, pp. 387-394.
    26.L. D. Chen, M. L. Huang, and S. M. Zhou, Effect of Electromigration on Intermetallic Compound Formation in Line-Type Cu/Sn/Cu Interconnect, Journal of Alloys and Compounds, 2010, 504(2), pp. 535-541.
    27.W. H. Wu, H. L. Chung, C. N. Chen, and C. E. Ho, The Influence of Current Direction on the Cu-Ni Cross-Interaction in Cu/Sn/Ni Diffusion Couples, Journal of Electronic Materials, 2009, 38(12), pp. 2563-2572.
    28.K. N. Tu, Recent Advances on Electromigration in Very-Large-Scale-Integration of Interconnects, Journal of Applied Physics, 2003, 94(9), pp. 5451-5473.
    29.T. L. Shao, S. W. Liang, T. C. Lin, and C. Chena, Three-dimensional Simulation on Current-Density Distribution in Flip-chip Solder Joints under Electric Current Stressing, Journal of Applied Physics, 2005, 98(4), p. 044509-8.
    30.J. W. Nah, K. W. Paikl, J. O. Suh, and K. N. Tu, Mechanism of Electromigration-Induced Failure in the 97Pb-3Sn and 37Pb-63Sn Composite Solder Joints, Journal of Applied Physics, 2003, 94(12), pp. 7560-7566.
    31.H. Ye, C. Basaran, and D. Hopkins, Thermomigration in Pb-Sn Solder Joints under Joule Heating during Electric Current Stressing, Applied Physics Letters, 2003, 82(7), pp. 1045-1047.
    32.T. Y. Lee, K. N. Tu, and D. R. Frear, Electromigration of Eutectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under-Bump metallization, Journal of Applied Physics, 2001, 90(9), pp. 4502-4508.
    33.E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elennius, and H. Balkan, Current-Crowding-Induced Electromigration Failure in Flip Chip Solder Joints, Applied Physics Letters, 2002, 80(4), pp. 580-582.
    34.K. Zeng, and K. N. Tu, Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology, Materials Science and Engineering: R: Reports, 2002, 38(2), pp. 55-105.
    35.Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, Electromigration Failure in Flip Chip Solder Joints due to Rapid Dissolution of Copper. Journal of Materials Research, 2003, 18(11), pp. 2544-2548.
    36.A. Kumar, Y. Yang, C. C. Wong, and Z. Chen, Effect of Electromigration on the Mechanical Performance of Sn-3.5Ag Solder Joints with Ni and Ni-P Metallizations, Journal of Electronic Materials, 2009, 38(1), pp. 78-87.
    37.L. H. Su, Y. W. Yen, C. C. Lin, and S. W. Chen, Interfacial Reaction in Molten Sn/Cu and Molten In/Cu Couples, Matallurgical and Materials Transactions B, 1997, 28, pp. 927-934.
    38.J. W. Yoon, and S. B. Jung, Interfacial Reactions between Sn-0.4Cu Solder and Cu Substrate with or without ENIG Plating Layer during Reflow Reaction, Journal of Alloys and Compounds, 2005, 396(1-2), pp. 122-127.
    39.N. C. Lee, Reflow Soldering and Processes and Troubleshooting:SMT,BGA,CSP and Filp Chip Technologies, 2002.
    40.G. Milad, and D. Gudeczauskas, Getting the Lead out of Surface Finishing: Consider Gold-Based Finishes, which Produce a Reliable Solder Joint, as an Alternate Source for Printed Circuitry, Metal Finishing, 2006, 104(1), pp. 33-36.
    41.A. Wurtz, Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 1844, 18, p. 702.
    42.A. Brenner, D. E. Couch, and E. K. Williams, Joural of Research of the National Institute of Standards and Technology, 1950, 44, p. 109.
    43.A. Brenner, and G. E. Riddell, The Electroless Nickel Plating, Journal of Research of the National Bureau of Standards (U. S.), 1946, 37, p. 31.
    44.A. Brenner, and G. E. Riddell, Deposition of Nickel and Cobalt by Chemical Reduction, Journal of Research of the National Bureau of Standards (U. S.), 1947, 39, p. 385.
    45.P. Breteau, Electrocatalytic Dechlorination of Atrazine, Bulletin des Societes Chimiques de France, 1911, pp. 764-771.
    46.W. Jang, P. G. Kim, K. N. Tu, D. R. Frear, and P. Thompson, Solder Reaction-Assisted Crystallization of Electroless Ni-P Under Bump Metallization in Low Cost Flip Chip Technology, Journal of Applied Physics, 1999, 85(12), pp. 8456-8463.
    47.Z. Mei, P. Callery, D. Fisher, F. Hua, and J. Glazer, Interfacial Fracture Mechanism of BGA Packages on Electroless Ni/Au, New York, NY: ASME, 1997, 2, pp. 1543-1550.
    48.B. Chapman, Glow Discharge Processes, New York: John Wiley & son, 1980.
    49.A. Brenner, Electrodeposition of Alloys, Academic press, Vol. 1-2, 1963.
    50.A. J. Bard, and L. R. Faulkner, Electrochemical Methodes, John Wiley & Sons, 1980.
    51.K. Zeng, V. Vuorinen, and J. K. Kivilahti, Interfacial Reactions Between Lead-Free SnAgCu Solder and Ni(P) Surface Finish on Printed Circuit Boards, IEEE Transations on Electronics Packaging Manufacturing, 2002, 25, p. 162.
    52.E. H. Wong, S. K. W. Seah, and V. P. W. Shim, A Review of Board Level Solder Joints for Mobile Applications, Microelectronics Reliability, 2008, 48(11-12), pp. 1747-1758.
    53.S. H. Chae, X. Zhang, K. H. Lu, H. L. Chao, P. S. Ho, M. Ding, P. Su, T. Uehling, and L. N. Ramanathan, Electromigration Statistics and Damage Evolution for Pb-free Solder Joints with Cu and Ni UBM in Plastic Flip-Chip Packages, Journal of Materials Science-Materials in Electronics, 2007, 18(1-3), pp. 247-258.
    54.W. M. Xiao, Y. W. Shi, G. C. Xu, R. Ren, F. Guo, Z. D. Xia, and Y. P. Lei, Effect of Rare Earth on Mechanical Creep-Fatigue Property of SnAgCu Solder Joint, Journal of Alloys and Compounds, 2009, 472(1-2), pp. 198-202.
    55.I. E. Anderson, B. A. Cook, J. Harringa, and R. L. Terpstra, Microstructural Modifications and Properties of Sn-Ag-Cu Solder Joints Induced by Alloying, Journal of Electronic Materials, 2002, 31(11), pp. 1166-1174.
    56.K. Kanlayasiri, and T. Ariga, Influence of Thermal Aging on Microhardness and Microstructure of Sn-0.3Ag-0.7Cu-xIn Lead-Free Solders, Journal of Alloys and Compounds, 2010, 504(1), pp. L5-L9.
    57.C. M. T. Law, C. M. L. Wu, D. Q. Yu, L. Wang, and J. K. L. Lai, Microstructure, Solderability, and Growth of Intermetallic Compounds of Sn-Ag-Cu-RE Lead-Free Solder Alloys, Journal of Electronic Materials, 2006, 35(1), pp. 89-93.
    58.T. Sasaki, M. Tanaka, and Y. Ohno, Intermetallic Compound Formation between Lead-Free Solders (Sn) and Cu or Ni Electrodes, Materials Letters, 2007, 61(10), pp. 2093-2095.
    59.C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni, Journal of Electronic Materials, 2002, 31(6), pp. 584-590.
    60.C. W. Chang, S. C. Yang, C. T. Tu, and C. R. Kao, Cross-interaction between Ni and Cu across Sn Layers with Different Thickness, Journal of Electronic Materials, 2007, 36(11), pp. 1455-1461.
    61.J. Y. Tsai, Y. C. Hu, C. M. Tsai, and C. R. Kao, A Study on the Reaction between Cu and Sn3.5Ag Solder Doped with Small Amounts of Ni, Journal of Electronic Materials, 2003, 32(11), pp. 1203-1208.
    62.Y. Hsiao, H. Tseng, and C. Liu, Electromigration-Induced Failure of Ni/Cu Bilayer Bond Pads Joined with Sn(Cu) Solders, Journal of Electronic Materials, 2009, 38(12), pp. 2573-2578.
    63.S. C. Yang, C. C. Chang, M. H. Tsai, and C. R. Kao, Effect of Cu Concentration, Solder Volume, and Temperature on the Reaction between SnAgCu Solders and Ni, Journal of Alloys and Compounds, 2010, 499(2), pp. 149-153.
    64.C. Yu, J. Liu, H. Lu, P. Li, and J. Chen, First-principles Investigation of the Structural and Electronic Properties of Cu6-xNixSn5 (x=0, 1, 2) Intermetallic Compounds, Intermetallics, 2007, 15(11), pp. 1471-1478.
    65.F. Gao, and J. Qu, Elastic Moduli of (Ni,Cu)3Sn4 Ternary Alloys from First-principles Calculations, Journal of Electronic Materials, 2010, 39(11), pp. 2429-2434.
    66.C. Schmetterer, H. Flandorfer, CH. Luef, A. Kodentsov, and H. Ipser, Cu-Ni-Sn: A Key System for Lead-free Soldering, Journal of Electronic Materials, 2009, 38(1), pp. 10-24.
    67.C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, Study of Electromigration-Induced Cu Consumption in the Flip-Chip Sn/Cu Solder Bumps, Journal of Applied Physics, 2006, 100(8), p. 083702-8.
    68.M. Lu, D. Y. Shin, P. Lauro, C. Goldsmith, and D. W. Henderson, Effect of Sn Grain Orientation on Electromigration Degradation Mechanism in High Sn-based Pb-Free Solders, Applied Physics Letters, 2008, 92(21), pp. 211909-3.
    69.D. C. Yeh, and H. B. Huntington, Extreme Fast-Diffusion System-Nickel in Single-Crystal Tin, Physical Review Letters, 1984, 53(15), pp. 1469-1472.

    下載圖示 校內:2012-08-09公開
    校外:2012-08-09公開
    QR CODE