| 研究生: |
夏丹俠 Chaitanya, Maddala Krishna |
|---|---|
| 論文名稱: |
利用瓷金材料製作高溫高吸收率太陽能吸收膜 High-Temperature High Absorptance Thin Film Coating Based on Cermet Structure Solar Energy Absorber |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 瓷金材料 、高溫高吸收膜 、COMSOL Multiphysics |
| 外文關鍵詞: | Cermet, High-temperature and high absorptance coating, COMSOL Multiphysics. |
| 相關次數: | 點閱:73 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究為利用陶瓷金屬材料建立多層膜結構發展能耐高溫之吸收膜
,其應用於聚焦型太陽能發電系統之集熱器上,目的是為了能夠提高對太陽輻射熱能的吸收,且可在高溫之於能不受破壞。本研究之吸收膜結構為在拋光過之SUS 304不鏽鋼基板上利用磁控濺鍍系統濺鍍一層鉻金屬反射層,接著利用共濺鍍系統濺鍍氮化鋁與金屬鎢之瓷金材料作為其主要吸收層,最後利用射頻濺鍍系統將三氧化二鋁及氮化矽材料堆疊完成,作為其吸收膜之抗反射層,目的為增加其吸收率;然而利用商用套裝軟體COMSOL Multiphysics 建構數學式,來模擬太陽光之傳播特性,並求得其吸收率、反射率、穿透率,求出最佳之各層膜厚,作為實驗之參考依據,並將其實驗結果與模擬結果作比對。
This study is aimed at the development of the high-temperature and high absorptance cermet-based multilayer thin film coating. These absorbers are used in the concentrating solar power technologies for absorbing solar radiation at high temperature. In the fabrication process, firstly a metal layer which serves as an infrared reflector is coated on the stainless steel (SUS-304) substrate. The cermet layer is made of aluminum nitride (AlN) and tungsten (W) and is coated with the metal layer by using the Co-sputtering process. Semiconductor material layer like aluminum oxide (Al2O3) or Silicon nitride (Si3N4) is coated on the cermet layer which serves as an anti-reflection coating. These multilayers are coated to achieve high absorptance and low thermal emittance. These thicknesses of the layers are arranged in the table from 10nm to 100nm and simulated by using a commercial package, COMSOL Multiphysics. The optimal values of the thicknesses suggested by the simulation are utilized for the coating. Experiments on measuring the absorptance and the emittance of the film coating are conducted, and the results are compared to the simulation.
[1]. Concentrating Solar Power System (CSP) technologies. Available from : http,//solareis,anl,gov/guide/solar/csp/.
[2]. Mancini T, Heller P, Butler B, Osborn B, Schiel W, Goldberg V, “Dish-Stirling systems, An overview of development and status”, Journal of Solar Energy Engineering, 2003, 125, 135-51.
[3]. Mammadov F, Study of selective surface of solar heat receiver, International Journal of Energy Engineering, 2012, 2, 138-44.
[4]. Kennedy CE, Review of mid-to high-temperature solar selective absorber materials, National Renewable Energy Laboratory Golden, Colo, USA, 2002.
[5]. Bermel P, Lee J, Joannopoulos JD, Celanovic I, Soljacie M, Selective solar absorbers, Annual Review of Heat Transfer, 2012,15.
[6]. Lampert CM, Coatings for enhanced photothermal energy collection I, Selective absorbers, Solar Energy Materials, 1979,1,319-41.
[7]. Seraphin BO, Optical properties of solids, new developments, North-Holland, 1976.
[8]. Seraphin B, Chemical vapor deposition of thin semiconductor films for solar energy conversion, Thin Solid Films, 1976,39,87-94.
[9]. Cao F, McEnaney K, Chen G, Ren Z, A review of cermet-based spectrally selective solar absorbers, Energy & Environmental Science, 2014,7,1615-27.
[10]. Arancibia-Bulnes C, Estrada C, Ruiz-Suárez J, Solar absorptance and thermal emittance of cermets with large particles, Journal of Physics D, Applied Physics, 2000,33,2489.
[11]. Kussmaul M, Mirtich MJ, Curren A, Ion beam treatment of potential space materials at the NASA Lewis Research Center, Surface and Coatings Technology, 1992,51,299-306.
[12]. Ball JW, Nordstrom DK, Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides, Journal of Chemical & Engineering Data, 1998,43,895-918.
[13]. Zhang Q-C, Shen Y, High performance W–AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering, Solar Energy Materials and Solar Cells, 2004,81,25-37.
[14]. Zhang Q-C, Recent progress in high-temperature solar selective coatings, Solar Energy Materials and Solar Cells, 2000,62,63-74.
[15]. Lanxner M, Elgat Z, Solar selective absorber coating for high service temperatures, produced by plasma sputtering, The Hague'90, 12-16 April, International Society for Optics and Photonics, 1990, p, 240-9.
[16]. Nagel H, Aberle AG, Hezel R, Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide, Progress in Photovoltaics, Research and Applications, 1999,7,245-60.
[17]. Jahan MP, San Wong Y, Rahman M, A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304), The International Journal of Advanced Manufacturing Technology, 2010,46,1145-60.
[18]. The Comsol model based on the Fresnel equations. Available from: https://www.comsol.com/model/fresnel-equations-12407.
[19]. Niklasson GA, Granqvist C, Hunderi O, Effective medium models for the optical properties of inhomogeneous materials, Applied Optics, 1981,20,26-30.
[20]. Zhang Q-C, Mills DR, High solar performance selective surface using bi-sublayer cermet film structures, Solar energy materials and solar cells.