| 研究生: |
莊詠翔 Chuang, Yung-Hsiagn |
|---|---|
| 論文名稱: |
60-及77-GHz毫米波GIPD射頻晶片天線/濾波天線及CMOS人造磁導體嵌入式天線之研製 Research on 60- and 77-GHz GIPD On-Chip Antenna / Filtering-Antennas and CMOS Artificial Magnetic Conductor (AMC) Antennas |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 毫米波 、晶片天線 、濾波天線 、人造磁導體 、balun帶通濾波器 、整合式被動元件 、60 GHz 、77 GHz |
| 外文關鍵詞: | millimeter-wave, on-chip antenna, filtering antenna, artificial magnetic conductor, AMC, balun-filter, IPD, 60 GHz, 77 GHz |
| 相關次數: | 點閱:98 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計研製毫米波GIPD與CMOS射頻晶片嵌入式天線,包含77-GHz GIPD Yagi天線與非平衡轉平衡(balun)帶通濾波器、77-GHz CMOS人造磁導體Yagi天線與balun帶通濾波器、整合77-GHz GIPD線性漸進式開槽天線與balun帶通濾波器、以及60-GHz GIPD非平衡式饋入偶極子及Yagi濾波天線等毫米波整合射頻晶片。77-GHz GIPD Yagi天線與balun帶通濾波器整合晶片採用tMt GIPD製程,結合毫米波接收機前端電路三種被動元件(天線、平衡器、帶通濾波器);77-GHz CMOS人造磁導體Yagi天線與balun帶通濾波器整合晶片採用TSMC CMOS 90-nm製程,利用人造磁導體結構改善CMOS製程天線輻射效率; 77-GHz GIPD線性漸進式開槽天線與非平衡轉平衡輸出帶通濾波器之整合晶片採用tMt GIPD製程,天線輻射體以平面式線性漸進式開槽架構實現;60-GHz GIPD非平衡式饋入偶極子及Yagi濾波天線採用tMt GIPD製程,設計60-GHz具有帶通濾波響應之射頻晶片嵌入式天線,包含非平衡式饋入偶極子濾波天線及Yagi濾波天線。設計之晶片訊號饋入系統皆以共面波導方式設計,天線架構皆以平面方式實現,使用ANSYS 3D全波電磁模擬軟體HFSS進行模擬,晶片量測採用on-wafer方式進行。
This thesis presents the design of millimeter-wave (MMW) GIPD and CMOS on-chip antennas. The GIPD and CMOS MMW on-chip antennas are fabricated with tMt GIPD process and TSMC 90-nm CMOS standard process, respectively. The three-dimensional (3D) EM simulator HFSS is used for design simulation. The designed MMW on-chip antennas including: (1) a 77-GHz GIPD integrated on-chip Yagi antenna with balun-bandpass filter, which combined three passive components (antenna, balun, bandpass filter) of the MMW receiver front-end; (2) a 77-GHz CMOS integrated on-chip AMC-Yagi antenna with balun-bandpass filter, in which an artificial magnetic conductor (AMC) between antenna and Si-substrate is placed to improve radiation efficiency; (3) a 77-GHz GIPD integrated on-chip linear tapered slot antenna (LTSA) with unbalanced-to-balanced bandpass filter, in which two sides of the LTSA are corrugated with rectangular gratings to increase the antenna power gain and F/B ratio; (4) a 60-GHz unbalanced-fed bandpass-filtering dipole/Yagi antennas with bandpass response. The measured performances of the designed MMW on-chip antennas are all performed by using the on-wafer measurement setup.
[1] 蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國九十九年七月。
[2] 岳翰林,毫米波CMOS射頻晶片嵌入式天線及人造磁導體嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年一月。
[3] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. New York: Wiley, 1998.
[4] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. New York: Wiley, 2005.
[5] Y. Huang and K. Boyle, Antenna From Theroy to Practice, 1st ed. John Wiley and Sons Ltd, 2008.
[6] D. M. Pozar, Microwave and RF Design of Wireless Systems, 1st ed. John Wiley and Sons Ltd, 2001.
[7] S. Saunders and A. Aragón-Zavala, Antennas and propagation for wireless communication systems, 2nd ed. John Wiley and Sons Ltd, 2007.
[8] S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, "A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18-um CMOS technology " IEEE Electron Device Lett., vol. 29, no. 6, pp. 625-627, Jun. 2008.
[9] H.-R. Chuang, L.-K. Yeh, P.-C. Kuo, K.-H. Tsai, and H.-L. Yue, "A 60-GHz millimeter-wave CMOS integrated on-chip antenna and bandpass filter," IEEE Trans. Electron Device, vol. 58, no. 7, pp. 1837-1845, Jul. 2011.
[10] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, "A 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced outputs," IEEE Electron Device Lett., vol. 31, no. 11, pp. 1205-1207, Nov. 2010.
[11] Y.-H. Chuang, H.-L. Yue, C.-Y. Hsu, and H.-R. Chuang, "A 77-GHz integrated on-chip Yagi antenna with unbalanced-to-balanced bandpass filter using IPD technology," in Asia-Pacific Microw. Conf., Dec. 2011, pp. 449-452.
[12] F.-J. Huang, C.-M. Lee, C.-Y. Kuo, and C.-H. Luo, "MMW antenna in IPD process for 60-GHz WPAN applications," IEEE Antennas and Wireless Propag. Lett., vol. 10, pp. 565-568, 2011.
[13] C. Calvez, C. Person, J. Coupez, F. Gallee, R. Pilard, F. Gianesello, D. Golria, D. Belot, and H. Ezzeddine, "Miniaturized hybrid antenna combining Si and IPD technologies for 60 GHz WLAN applications," in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 2011, pp. 1357-1359.
[14] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alex´opolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999.
[15] R. J. Langley and A. J. Drinkwater, "Improved empirical model for the Jerusalem cross," IEE Proc. H Microw., Opt. and Antennas, vol. 129, no. 1, pp. 1-6, 1982.
[16] M. K. T. Al-Nuaimi and W. G. Whittow, "Low profile dipole antenna backed by isotropic artificial magnetic conductor reflector," in Eur. Conf. on Antennas Propag., Apr. 2010, pp. 1-5.
[17] H. Mosallaei and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403-2414, Sep. 2004.
[18] C. R. Simovski, P. d. Maagt, and I. V. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Trans. Antennas Propag., vol. 53, no. 3, pp. 908-914, Mar. 2005.
[19] H. Chu, Y.-X. Guo, and X.-Q. Shi, "Wideband 60 GHz on-chip antenna with an artificial magnetic conductor," in IEEE Int. Symp. on Radio-Freq. Integr. Tech., Nov. 2009, pp. 307-310.
[20] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, "A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS," IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720-1731, Sep. 2010.
[21] X.-Y. Bao, Y.-X. Guo, and Y.-Z. Xiong, "60-GHz AMC-based circularly polarized on-chip antenna using standard 0.18-μm CMOS technology," IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2234-2241, May 2012.
[22] F. Yang and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2691-2703, Oct. 2003.
[23] M. K. T. Al-Nuaimi and W. G. Whittow, "Ultra thin dipole antenna backed by new planar artificial magnetic conductor," in Loughborough Antennas Propag. Conf., Nov. 2009, pp. 97-100.
[24] A. Foroozesh and L. Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 4-20, Jan. 2011.
[25] S. Sugawara, Y. Maita, K. Adachi, K. Mori, and K. Mizuno, "A mm-wave tapered slot antenna with improved radiation pattern," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1998, pp. 533-536.
[26] P. J. Gibson, "The Vivaldi aerial," in Proc. 9th Eur. Microw. Conf., Mar. 1979, pp. 101-105.
[27] R. Janaswamy and D. H. Schaubert, "Analysis of the tapered slot antennas," IEEE Trans. Antennas Propag., vol. 35, no. 9, pp. 1058-1065, Sep. 1987.
[28] F. J. Zucker, "Surface-Wave Antennas," in Antenna Engineering Handbook, 4th ed. McGraw-Hill, 2007.
[29] K. S. Yngvesson, T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg, and J. F. Johansson, "The tapered slot antenna - a new integrated element for millimeter-wave applications," IEEE Trans. Microw. Theory Tech., vol. 37, no. 2, pp. 365-374, Feb. 1989.
[30] K. S. Yngvesson, D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren, and J. F. Johansson, "Endfire tapered slot antennas on dielectric substrates," IEEE Trans. Antennas Propag., vol. 33, no. 12, pp. 1392-1400, Dec. 1985.
[31] H.-Y. Xu, H. Zhang, J. Wang, and L.-X. Ma, "A new tapered slot antenna with symmetrical and stable radiation pattern," Progre. Electromagnetics Research Lett., vol. 5, pp. 35-43, 2008.
[32] C.-T. Chuang and S.-J. Chung, "New printed filtering antenna with selectivity enhancement," in Proc. 39th Eur. Microw. Conf., Sep. 2009, pp. 747-750.
[33] Z. Ma and Y. Kobayashi, "Design and realization of bandpass filters using composite resonators to obtain transmission zeros," in Proc. 35th Eur. Microw. Conf., Oct. 2005, pp. 1255-1258.
[34] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbot, and N. Weste, "60 GHz radios: enabling next-generation wireless applications," in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1-6.
[35] C.-M. Tsai, S.-Y. Lee, and C.-C. Tsai, "Performance of a planar filter using a 0° feed structure," IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2362-2367, Oct. 2002.
[36] R. N. Simons and R. Q. Lee, "On-wafer characterization of millimeter-wave antennas for wireless applications," IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92-96, Jan. 1999.
[37] RF atmospheric absorption / ducting [Online].
Available: http://www.tscm.com/rf_absor.pdf
[38] IEEE 802.15 Working Group for WPAN. [Online].
Available: http://www.ieee802.org/15