簡易檢索 / 詳目顯示

研究生: 詹川逸
Chan, Chuan-Ti
論文名稱: 新型微奈米壓印技術模具之製作及其應用於可撓曲有機發光顯示器
Fabrication of Novel Molds for Micro/ Nano- Imprint Technology and Its applications for Large-Scaled Flexible Organic Light Emitting Displays
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 87
中文關鍵詞: 壓印微影技術光微影技術
外文關鍵詞: photolithography, imprint lithography
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   奈米壓印技術(Nanoimprint Lithography)是在1995年由Stephen Y. Chou教授提出,此技術具有成本低、高解析度、產能高的特點。奈米壓印技術並不使用曝光源,所以它的解析度不受光對阻劑的繞射、散射和干涉作用以及基板的背向散射作用所影響到。
      壓印技術的第一步就是模具的製作,由模具來定義圖案。本研究嘗試製作出矽、石英和玻璃三種材質的模具,另外還有三維尺度的矽模具和應用於混合型壓印製程的混和型模具;分析製程參數對模具的均勻性的影響。還針對高溫壓印製程和混合型壓印製程,進行製程的研究和探討。並以可撓曲的PET基板進行圖案轉移,基板表面濺鍍一層氧化銦錫薄膜,利用草酸來蝕刻氧化銦錫將其圖案化。
      在本研究中,已可將矽和石英模具的均勻性提高至97%以上,其中RIE對石英基板的蝕刻速率更是大幅提昇。另外,混和型模具的深度可達17μm,使得混合型壓印製程具有高深寬比的能力。在壓印製程方面,經由實驗發覺高溫壓印的平均壓力值遠小於文獻記載;而且也以滾輪式混合型壓印製程進行圖案轉移,此製程具有低成本、製程簡單和製程時間短的特性。最後分別利用這兩種壓印製程,完成大尺寸的有機發光顯示器的製作並量測其元件特性,包含驅動電壓、亮度、電流效率和輝度效率。

      In 1995, Professor Stephen Y. Chou proposed nanoimprint lithography technique, and it is low cost, high resolution, and high-throughput. Nano- imprint lithography does not utilize any energetic beams; its resolution is not limited by the effects of wave diffraction, scattering and interference in a resist, and backscattering from the substrate.
      The first step of nanoimprint lithography is mold fabrication, and pattern is defined by the mold. In this study, we successfully make three kinds of molds, including silicon, quartz and glass molds for hot embossing and room- temperature lithography. Three-dimension mold and hybrid mold are also fabricated. The effects of fabrication parameter on the mold’s configuration uniformity are investigated. Pattern transforms to ITO film sputtered with flexible PET substrate by oxalic acid.
      In this research, we demonstrate that the uniformities of silicon and quartz molds are both high than 97%; especially quartz etching rate increases a lot by RIE. The hybrid mold’s depth can arrive 17μm which show high aspect ratio. In addition, the pressure under experiments is smaller than the data published elsewhere. Roller hybrid imprint lithography is then used to transfer the pattern to the substrate. It is a low cost, easy process, and short process time method. Finally, large-scaled flexible organic light emitting displays are fabricated by imprint lithography and hybrid imprint lithography and devices’ characteristics are investigated, such as turn-on voltage, luminance, current efficiency, and power efficiency.

    目錄 中文摘要…………………………………………………………………………Ⅰ 英文摘要…………………………………………………………………………Ⅲ 誌謝………………………………………………………………………………Ⅴ 目錄………………………………………………………………………………Ⅵ 表目錄……………………………………………………………………………Ⅸ 圖目錄……………………………………………………………………………Ⅹ 第一章 前言………………………………………………………………………1 1-1文獻回顧………………………………………………………………………1 1-2研究動機………………………………………………………………………6 1-3研究目的………………………………………………………………………7 第二章 壓印製程技術原理………………………………………………………8 2-1微接觸式印刷技術……………………………………………………………8 2-2熱壓印微影技術………………………………………………………………8 2-3紫外光型奈米壓印技術………………………………………………………9 2-4混和型壓印技術………………………………………………………………10 第三章 實驗方法與步驟…………………………………………………………13 3-1壓印技術之模具製作…………………………………………………………13 3-1-1矽模具製作…………………………………………………………………15 3-1-2石英模具製作………………………………………………………………15 3-1-3玻璃模具製作………………………………………………………………15 3-1-4三維尺度模具製作…………………………………………………………15 3-1-5混和型壓印模具製作………………………………………………………16 3-2壓印製程………………………………………………………………………16 3-2-1高溫壓印製程………………………………………………………………17 3-2-2滾輪式壓印法………………………………………………………………19 3-3有機發光元件製作……………………………………………………………19 第四章 結果與討論………………………………………………………………22 4-1反應式離子蝕刻效應探討……………………………………………………22 4-2模具製作分析和結果討論……………………………………………………23 4-2-1矽模具製作分析和結果討論………………………………………………23 4-2-2石英模具製作分析和結果討論……………………………………………27 4-2-3玻璃模具製作分析和結果討論……………………………………………27 4-2-4三維尺度模具製作分析和結果討論………………………………………29 4-2-5混和型模具製作分析和結果討論…………………………………………29 4-3壓印製程分析和結果討論……………………………………………………30 4-3-1高溫壓印製程分析和結果討論……………………………………………30 4-3-2混和型壓印製程分析和結果討論…………………………………………33 4-3-3壓印製程比較和分析………………………………………………………34 4-4大尺寸可撓曲有機發光元件製作分析和量測結果討論……………………35 4-4-1陽極ITO圖案化製程分析和結果討論……………………………………35 4-4-2圖案化之有機發光元件製作分析和結果討論……………………………37 第五章 結論………………………………………………………………………38 第六章 未來展望…………………………………………………………………41 第七章 參考文獻…………………………………………………………………42 附圖………………………………………………………………………………47 附表………………………………………………………………………………80

    1 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114(1995)
    2 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85(1996)
    3 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129(1996)
    4 S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, J. Vac. Sci. Technol. B 15, 2897(1997)
    5 M. Li, L. Chen, and S. Y. Chou, Appl. Phys. Lett. 78, 3322(2001)
    6 L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B 20, 2881(2002)
    7 D. Eisert, W. Braun, S. Kuhn, J. Koeth, and A. Forchel, Microelectron. Eng. 46, 179(2001)
    8 S. Zankovych, T. Hoffmann, J. Seekamp, J. -U. Bruch, and C. M. S. Torres Nanotechnology 12, 91(2001)
    9 M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, Microelectron. Eng. 57-58, 367(2001)
    10 J. Taniguchi, Y. Tokano, I. Miyamoto, M. Komuro, and H. Hiroshima, Nanotechnology 13, 592(2002)
    11 G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter, and Bruce D. Terris, Appl. Phys. Lett. 81, 1483(2002)
    12 K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C.M. S. Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H. -C. Scheer, and F. Steingrueber, Microelectron. Eng. 61-62, 393(2002)
    13 Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, and Y. Tanaka, Jpn. J. Appl. Phys. 41, 4186(2002)
    14 Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka and M. Kobayasi, J. Vac. Sci. Technol. B 20, 2867(2002)
    15 P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, J. Vac. Sci. Technol. B 17, 2965(1999)
    16 T.C. Bailey, D.J. Resnick, D. Mancini, K.J. Nordquist, W.J. Dauksher, E. Ainley, A. Talin, K. Gehoski, J.H. Baker, B.J. Choi, S. Johnson, M. Colburn, M. Meissl, S.V. Sreenivasan, J.G. Ekerdt, and C.G. Willson, Microelectron. Eng. 61-62, 461(2002)
    17 W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, J. Vac. Sci. Technol. B 20, 2857(2002)
    18 M. Komuro, Y. Tokano, J. Taniguchi, T. Kawasaki, I. Miyamoto, and H. Hiroshima, Jpn. J. Appl. Phys. 41, 4182(2002)
    19 T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, J. Vac. Sci. Technol. B 18, 3572(2000)
    20 M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, L. Montelius, Microelectron. Eng. 61-62, 441(2002)
    21 Y. Hirai, Y. Kanemaki, K. Murata, and Y. Tanaka, Jpn. J. Appl. Phys. 38, 7272(1999)
    22 D. S. Macintyre, Y. Chen, D. Lim, and S. Thoms, J. Vac. Sci. Technol. B 19, 2797(2001)
    23 T. Borzenko, M. Tormen, V. Hock, J. Liu, G. Schmidt, and L.W. Molenkamp, Microelectron. Eng. 57-58, 389(2001)
    24 A. Baba, M. Iwamoto, K. Tsubaki, and T. Asano, Jpn. J. Appl. Phys. 41, 4190(2002)
    25 V. Grigaliunas, S. Tamulevicius, G. Niaura, V. Kopustinskas, A. Gudonyte, D. Jucius, Physica E 16, 568(2003)
    26 M.M. Alkaisi, W. Jayatissa, M. Konijn, Current Applied Physics 4, 111(2004)
    27 Z. Yu and S. Y. Chou, Nano Lett. 4, 341(2004)
    28 P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, C. G. Willson, J. Vac. Sci. Technol. B 17, 2965(1999)
    29 T. Morita, K. Watanabe, R. Kometani, K. Kanda, Y. Haruyama, T. Kaito, J. -I. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, Jpn. J. Appl. Phys. 42, 3874(2003)
    30 F. Gottschalch, T. Hoffmann, C. M. S. Torres, H. Schulzb, H. -C. Scheer, Solid-State Electronics 43, 1079(1999)
    31 D. -Y. Khang and H. H. Lee, Appl. Phys. Lett. 76, 2767(2000)
    32 K. Pfeiffer, G. Bleidiessel, G. Gruetzner, H. Schulz, T. Hoffmann, H. -C. Scheer, C. M. S. Torres, and J. Ahopelto, Microelectron. Eng. 46, 431(1999)
    33 R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, P. Groning, Applied Surface Science 143, 301(1999)
    34 K. Pfeiffer, M. Fink, G. Bleidiessel, G. Gruetzner, H. Schulz, H. -C. Scheer, T. Hoffmann, C. M. S. Torres, F. Gaboriau, and Ch. Cardinaud, Microelectron. Eng. 53, 411(2000)
    35 L.J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng. 54, 229(2000)
    36 H. -C. Scheer and H. Schulz, Microelectron. Eng. 56, 311(2001)
    37 D. Lyebyedyev, H. Schulz, H. -C. Scheer, K. Pfeiffer, Materials Science and Eng. C 15, 241(2001)
    38 A. Lebib, M. Natali, S.P. Li, E. Cambril, L. Manin, Y. Chen, H.M. Janssen, and R.P. Sijbesma, Microelectron. Eng. 57-58, 411(2001)
    39 S. Matsui, Y. Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, M. Komuro and H. Hiroshima, J. Vac. Sci. Technol. B 19, 2801(2001)
    40 Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa, and M. Sasago, J. Vac. Sci. Technol. B 19, 2811(2001)
    41 A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin, H. M. Janssen, and R.P. Sijbesma, Microelectron. Eng. 61-62, 371(2002)
    42 C. Gourgon, C. Perret, and G. Micouin, Microelectron. Eng. 61-62, 385(2002)
    43 M. Sagnes, L. Malaquin, F. Carcenac, C. Vieu, and C. Fournier, Microelectron. Eng. 61-62, 429(2002)
    44 S. Park, C. Padeste, H. Schift, and Jens Gobrecht, Microelectron. Eng. 67-68, 252(2003)
    45 K. Pfeiffer, F. Reuther, M. Fink, G. Gruetzner, P. Carlberg, I. Maximov, L. Montelius, J. Seekamp, S. Zankovych, C. M. S. Torres, H. Schulz, H. -C. Scheer, Microelectron. Eng. 67-68, 266(2003)
    46 C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J. H. Tortai, O. Joubert, and J. -P. E. Grolier, J. Vac. Sci. Technol. B 21, 98(2003)
    47 C. Martin, L. Ressier, and J. P. Peyrade, Physica E 17, 523(2003)
    48 G. Y. Jung, S. Ganapathiappan, X. Li, D. A. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong, and R.S. Williams, Appl. Phys. A 78, 1169(2004)
    49 H. Tan, A. Gilbertson, and S. Y. Chou, J. Vac. Sci. Technol. B 16, 3926(1998)
    50 D. -Y. Khang and Hong H. Lee, Appl. Phys. Lett. 75, 2599(2000)
    51 H. Schulz, A. S. Korbes, H. -C. Sheer, and L. J. Balk, Microelectron. Eng. 53, 221(2000)
    52 M. Bender, M. Otto, B. Hadam, B. Vartzov, B. Spangenberg, and H. Kurz, Microelectron. Eng. 53, 233(2000)
    53 D. -Y. Khang and Hong H. Lee, Appl. Phys. Lett. 76, 870(2000)
    54 M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz, Microelectron. Eng. 57-58, 361(2001)
    55 L.J. Heyderman, H. Schift, C. David, B. Ketterer, M. A. D. Maur, and J. Gobrecht, Microelectron. Eng. 57-58, 375(2001)
    56 A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin, H.M. Janssen, R.P. Sijbesma, Microelectron. Eng. 61-62, 371(2002)
    57 M. Bender, M. Otto, B. Hadam, B. Vartzov, B. Spangenberg, and H. Kurz, Microelectron. Eng. 61-62, 407(2002)
    58 S. Y. Chou, C. Keimel, and J. Gu, Nature 417, 835(2002)
    59 B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, and H. Kurz, J. Vac. Sci. Technol. B 21, 2760(2003)
    60 C. M. S. Torres, S. Zankovych, J. Seekamp, A.P. Kam, C. C. Cedeno, T. Hoffmanna, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, Materials Science and Eng. C 23, 23(2003)
    61 T. Haatainen and J. Ahopelto, Physica Scripta 67, 357(2003)
    62 Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, and S. Y. Chou, Appl. Phys. Lett. 83, 4417(2003)
    63 L. Ressier, C. Martin, and J. P. Peyrade, Microelectron. Eng. 71, 272(2004)
    64 G. Y. Jung, S. Ganapathiappan, X. Li, D. A. A. Ohlberg, D. L. Olynick, Y. Chen, W. M. Tong and R. S. Williams, Appl. Phys. A 78, 1169(2004)
    65 V. Grigaliunas, S. Tamulevicius, R. Tomasiunas, V. Kopustinskas, A. Guobiene, and D.Jucius, Thin Solid Films 453-454, 13(2004)
    66 D. -Y. Khang, H. Kang, T. -I. Kim, and H. H. Lee, Nano Lett. 4, 633(2004)
    67 D. Pisignano, L. Persano, M. F. Raganato, P. Visconti, R. Cingolani, G. Barbarella, L. Favaretto, and G. Gigli, Adv. Mater. 16, 525(2004)
    68 D. Eisert, W. Braun, S. Kuhn, J. Koeth, and A. Forchel, Microelectron. Eng. 46, 179(1999)
    69 L. J. Heyderman, H. Schift, C. David, B. Ketterer, M. A. D. Maur, and J. Gobrecht, Microelectron. Eng. 57-58, 375(2001)
    70 H. Schift, L. J. Heyderman, C. Padeste, and J. Gobrecht, Microelectron. Eng. 61-62, 375(2002)
    71 J. Feng, B. Cui, Y. Zhan, and S. Y. Chou, Electrochemistry Communications 4,102(2002)
    72 Y. Chen, D. S. Macintyre, and S. Thoms, Microelectron. Eng. 67-68, 245(2003)
    73 A. L. Bogdanov, T. Holmqvist, P. Jedrasik, and B. Nilsson, Microelectron. Eng. 67-68, 381(2003)
    74 Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B 21,2089(2003)
    75 P. Carlberg, M Graczyk, E. -L. Sarwe, I. Maximov, M. Beck, and L. Montelius, Microelectron. Eng. 67-68, 203(2003)
    76 Y. Hirai, K. Kanakugi, T. Yamaguchi, K. Yao, S. Kitagawa, and Y. Tanaka, Microelectron. Eng. 67-68, 237(2003)
    77 H. Schulz, M. Wissen, and H. -C. Scheer, Microelectron. Eng. 67-68, 657(2003)
    78 P. S. Hong and H. H. Lee, Appl. Phys. Lett. 83, 2441(2003)
    79 L. J. Guo, P. R. Krauss, and S. Y. Chou, Appl. Phys. Lett. 71, 1881(1997)
    80 J. Wang, X. Sun, L. Chen, and S. Y. Chou, Appl. Phys. Lett. 75, 2767(1999)
    81 X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, J. Vac. Sci. Technol. B 20, 2877(2002)
    82 D. Suh and H. H. Lee, J. Vac. Sci. Technol. B 22, 1123(2004)
    83 Y. Chen, A. Lebib, S.P. Li, M. Natali, D. Peyrade, and E. Cambril, Microelectron. Eng. 57-58, 405(2001)
    84 Y. Takagaki, E. Wiebicke, H. Kostial, and K. H. Ploog, Nanotechnology 13, 15(2002)
    85 C. Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862(2002)
    86 M. D. Austin and S. Y. Chou, Appl. Phys. Lett. 81, 4431(2002)
    87 J. Seekamp, S. Zankovych, A. H. Helfer, P. Maury, C. M. S. Torres, G. Bottger, C. Liguda, M. Eich, B. Heidari, L. Montelius, and J. Ahopelto, Nanotechnology 13, 581(2002)
    88 H. Cao, J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou, Appl. Phys. Lett. 81, 3058(2002)
    89 W. Zhang and S. Y. Chou, Appl. Phys. Lett. 83, 1632(2003)
    90 T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, Nano Lett. 4, 699(2004)
    91 A. Kumar and G. M. Whitesides, Appl. Phys. Lett. 63, 2002(1993)
    92 D. Wang, S. G. Thomas, K. L. Wang, Y. Xia, and G. M. Whitesides, Appl. Phys. Lett. 70, 1593(1997)
    93 Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153(1998)
    94 H. Tan, A. Gilbertson, and S. Y. Chou, J. Vac. Sci. Technol. B 16, 3926(1998)
    95 S. Y. Chou, C. Keimel, and J. Gu, Nature 417, 835(2002)
    96 Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, and S. Y. Chou, Appl. Phys. Lett. 83, 4417(2003)
    97 L. Malaquin, F. Carcenac, C. Vieu, and M. Mauzac, Microelectron. Eng. 61-62, 379(2002)
    98 F. Carcenac, L. Malaquin, and C. Vieu, Microelectron. Eng. 61-62, 657(2002)
    99 W. M. Choi and O. Ok Park, Microelectron. Eng. 70, 131(2003)
    100 M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J.G. Ekerdt, and C.G. Willson, Proc. SPIE 3676(I):379(1999)
    101 X. Cheng and L. J. Guo, Microelectron. Eng. 71, 277(2004)
    102 X. Cheng and L. J. Guo, Microelectron. Eng. 70, 288(2004)
    103 G. Dahm, I.W. Rangelow, P. Hudek, and H.W.P. Koops, Microelectron. Eng. 27, 263(1995)
    104 R. Subramanian, J. Welter, and P.V. Wright, IEEE Ultrasonics Symp. pp: 255-260(1996)
    105 X. Lia, T. Abeb, and M. Esashi, Sensors and Actuators A 87, 139(2001)

    下載圖示 校內:2006-06-30公開
    校外:2007-06-30公開
    QR CODE