| 研究生: |
蘇皇銘 Su, Huang-Ming |
|---|---|
| 論文名稱: |
黑皮海綿共棲藍綠菌 GI-1 之鑑定 Identification of Cyanobacterium GI-1 Associated with Terpios hoshinota |
| 指導教授: |
楊惠郎
Yang, Huey-Lang 陳逸民 Chen, Yi-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 珊瑚黑病 、黑皮海綿 、共生藍綠菌 、藻紅蛋白 |
| 外文關鍵詞: | black disease, Terpios hoshinota, symbiotic cyanobacteria, Phycoerythrin |
| 相關次數: | 點閱:119 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綠島珊瑚礁於 2006 年大量死亡,經發現乃因黑皮海綿 (Terpios hoshinota) 覆蓋於珊瑚上所致。電顯切片發現,海綿體腔內含大量藍綠菌,可能和提供海綿營養、助長其快速蔓延有關。為進一步了解藍綠菌的種類及特性,我們在三年前進行黑皮海綿採樣,由其中挑取藍綠菌進行培養,並成功獲得一株藍綠菌品系 GI-1 ,發現與野外黑皮海綿體腔內的共生藍綠菌具近似的親緣關係。
因此,本研究的目的,在於利用 16S rDNA 搭配型態觀察、基因體分析、乃至於脂肪酸、藻紅蛋白及營養能力分析等生化特徵進行鑑定,結果發現其無論就 16S rDNA 、型態、 GC content 、基因體大小及產生孢子的能力等,均符合「type II」藍綠菌的特徵;其孢子囊型態以及孢子無趨光能力的特性和 type II 藍綠菌的 Chroococcidiopsis 相近,而脂肪酸組成及藻紅蛋白吸收光譜波型卻近似於同為 type II 的另一屬 Myxosarcina 。依現行 type II 型態分類依據,理應將 GI-1 歸類為 Chroococcidiopsis 屬內,然從脂肪酸組成、藻紅蛋白光譜,乃至於親緣關係分析結果,均顯示 GI-1 與 Chroococcidiopsis 有明顯差異,有必要將其獨立成一個新屬。
A mass mortality of coral reefs happened in Green Island in 2006, due to the invasion of the black sponge Terpios hoshinota. The electron microscopy observation showed that the internal cavity of the sponge filled with cyanobacteria cells, which might provide nutrition and help outbreak of the “black disease”. In order to characterize and identify the unique symbiotic cyanobacteria in T. hoshinota, we have tried to isolate the cyanobacteria. Fortunately, we isolated a cyanobacterium named GI-1, and the phylogenetic analysis was closely related with symbiotic cyanobacteria with T. hoshinota.
The purposed of this study was to confirm the relationship between T. hoshinota and GI-1. We used morphology, biochemical and genomic analysis to do the fundamental research of Black disease. According to the results, GI-1 was recognized as type II cyanobacterium. The colony shape of GI-1 resembles Myxosarcina and Chroococcidiopsis, the fatty acid profile was similar to the former but the phototactic response closed to the latter, therefore according to the type II cyanobacteria identification criterion, GI-1 should be classed into Chroococcidiopsis, however its phylogenetic relationship and biochemical characteristic is different. On the basis of it's phylogenetic, morphological and biochemical distinctiveness, strain GI-1 represents a novel species of type II cyanobacteria.
Arillo, A., Bavestrello, G., Burlando, B., & Sara, M. (1993). Metabolic integration between symbiotic cyanobacteria and sponges - a possible mechanism. Marine Biology, 117. p. 159
Bakke, P., Carney, N., Deloache, W., Gearing, M., Ingvorsen, K., Lotz, M., McNair, J., Penumetcha, P., Simpson, S., Voss, L., Win, M., Heyer, L. J., & Campbell, A. M. (2009). Evaluation of three automated genome annotations for Halorhabdus utahensis. PLoS One, 4. p. e6291
Ben-Porath, J., & Zehr, J. P. (1994). Detection and characterization of cyanobacterial nifH genes. Appl Environ Microbiol, 60. p. 880
Berkelman, T. R., & Lagarias, J. C. (1986). Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Analytical Biochemistry, 156. p. 194
Bryan, P. G. (1973). Growth rate, toxicity and distribution of the encrusting sponge Terpios sp. (Hadromerida: Suberitidae) in Guam, Mariana Islands. Micronesica, 9. p. 237
Bryant, D. A. (1982). Phycoerythrocyanin and phycoerythrin - properties and occurrence in cyanobacteria. Microbiology, 128. p. 835
Caudales, R., & Wells, J. M. (1992). Differentiation of free-living Anabaena and Nostoc cyanobacteria on the basis of fatty-acid composition. International Journal of Systematic Bacteriology, 42. p. 246
Caudales, R., Wells, J. M., & Butterfield, J. E. (2000). Cellular fatty acid composition of cyanobacteria assigned to subsection II, order Pleurocapsales. International Journal of Systematic and Evolutionary Microbiology, 50. p. 1029
Dittrich, M., & Sibler, S. (2010). Calcium carbonate precipitation by cyanobacterial polysaccharides. Geological Society, London, Special Publications, 336. p. 51
Dupraz, C., & Visscher, P. T. (2005). Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13. p. 429
Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17. p. 368
Fiore, C. L., Jarett, J. K., Olson, N. D., & Lesser, M. P. (2010). Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol, 18. p. 455
Fitch, W. M. (1977). Problem of discovering most parsimonious tree. American Naturalist, 111. p. 223
Godshall, M. A. (1983). Interference of plant polysaccharides and tannin in the Coomassie Blue-G250 test for protein. Journal of Food Science, 48. p. 1346
Grossman, A. R., Schaefer, M. R., Chiang, G. G., & Collier, J. L. (1993). The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev, 57. p. 725
Herdman, M., Janvier, M., Rippka, R., & Stanier, R. Y. (1979). Genome size of cyanobacteria. Microbiology, 111. p. 73
Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., & Stanier, R. Y. (1979). Deoxyribonucleic-acid base composition of cyanobacteria. Microbiology, 111. p. 63
Hirose, E., & Murakami, A. (2011). Microscopic anatomy and pigment characterization of coral-encrusting black sponge with cyanobacterial symbiont, Terpios hoshinota. Zoological Science, 28. p. 199
Ishida, T., Watanabe, M. M., Sugiyama, J., & Yokota, A. (2001). Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett, 201. p. 79
Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45. p. 2761
Kenyon, C. N. (1972). Fatty acid composition of unicellular strains of blue-green algae. Journal of Bacteriology, 109. p. 827
Kenyon, C. N., & Stanier, R. Y. (1970). Possible evolutionary significance of polyunsaturated fatty acids in blue–green algae. Nature, 227. p. 1164
Kenyon, C. N., Stanier, R. Y., & Rippka, R. (1972). Fatty-acid composition and physiological properties of some filamentous blue-green-algae. Archives of Microbiology, 83. p. 216
Kufer, W., & Bjorn, G. S. (1989). Photochromism of the cyanobacterial light harvesting biliprotein phycoerythrocyanin. Physiologia Plantarum, 75. p. 389
Kunkel, D. D. (1984). Cell-division in baeocyte producing cyanobacteria. Protoplasma, 123. p. 104
Levy-Frebault, V. V., & Portaels, F. (1992). Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species. International Journal of Systematic Bacteriology, 42. p. 315
Liao, M. H., Tang, S. L., Hsu, C. M., Wen, K. C., Wu, H., Chen, W. M., Wang, J. T., Meng, P. J., Twan, W. H., Lu, C. K., Dai, C. F., Soong, K., & Chen, C. A. (2007). The “ Black Disease” of reef-building corals at Green Island, Taiwan – outbreak of a cyanobacteriospong, Terpios hoshinota (Suberitidae; Hadromerida). Zoological Studies, 46. p. 520
MacColl, R. (1998). Cyanobacterial phycobilisomes. J Struct Biol, 124. p. 311
Mazor, G., Kidron, G. J., Vonshak, A., & Abeliovich, A. (1996). The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology, 21. p. 121
Mohamed, N. M., Colman, A. S., Tal, Y., & Hill, R. T. (2008). Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol, 10. p. 2910
Muscatine, L., & Porter, J. W. (1977). Reef corals - mutualistic symbioses adapted to nutrient-poor environments. Bioscience, 27. p. 454
Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press.
Parker, D. L., Schram, B. R., Plude, J. L., & Moore, R. E. (1996). Effect of metal cations on the viscosity of a pectin-like capsular polysaccharide from the Cyanobacterium Microcystis flos-aquae C3-40. Appl Environ Microbiol, 62. p. 1208
Parmar, A., Singh, N. K., Kaushal, A., Sonawala, S., & Madamwar, D. (2011). Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures. Bioresource Technology, 102. p. 1795
Partensky, F., Hess, W. R., & Vaulot, D. (1999). Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews, 63. p. 106
Paul, H., Reginato, A. J., & Schumacher, H. R. (1983). Alizarin red-s staining as a screening-test to detect calcium compounds in synovial-fluid. Arthritis & Rheumatism, 26. p. 191
Plucer-Rosario, G. (1987). The effect of substratum on the growth of Terpios, an encrusting sponge which kills corals. Coral Reefs, 5. p. 197
Prosperi, C. H. (1994). A cyanophyte capable of fixing nitrogen under high-levels of oxygen. Journal of Phycology, 30. p. 222
Rützler, K., & Muzik, K. (1993). Terpios hoshinota, a new cyanobacteriosponge threatening Pacific reefs. Scientia Marina, 57. p. 395
Reddy, K. J., Soper, B. W., Tang, J., & Bradley, R. L. (1996). Phenotypic variation in exopolysaccharide production in the marine, aerobic nitrogen-fixing unicellular cyanobacterium Cyanothece sp. World Journal of Microbiology & Biotechnology, 12. p. 311
Řezanka, T., Zahradník, J., & Podojil, M. (1982). Hydrocarbons in green and blue-green algae. Folia Microbiologica, 27. p. 450
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111. p. 1
Román, R. B., Alvarez-Pez, J. M., Fernandez, F. G. A., & Grima, E. M. (2002). Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology, 93. p. 73
Saitou, N., & Nei, M. (1987). The neighbor-joining method - a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4. p. 406
Sallal, A. K., Nimer, N. A., & Radwan, S. S. (1990). Lipid and fatty-acid composition of fresh-water cyanobacteria. Journal of General Microbiology, 136. p. 2043
Schirrmeister, B. E., Antonelli, A., & Bagheri, H. C. (2011). The origin of multicellularity in cyanobacteria. BMC Evolutionary Biology, 11. p. 45
Schoenleber, R. W., Lundell, D. J., Glazer, A. N., & Rapoport, H. (1984). Bilin attachment sites in the alpha-subunit and beta-subunit of B-phycoerythrin - structural studies on the singly linked phycoerythrobilins. Journal of Biological Chemistry, 259. p. 5485
Singh, N. K., Parmar, A., & Madamwar, D. (2009). Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresource Technology, 100. p. 1663
Stanier, R. Y., & Cohen-Bazire, G. (1977). Phototrophic prokaryotes: the cyanobacteria. Annual Review of Microbiology, 31. p. 225
Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Microbiology and Molecular Biology Reviews, 35. p. 171
Tamaoka, J., & Komagata, K. (1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiology Letters, 25. p. 125
Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24. p. 1596
Tang, S. L., Hong, M. J., Liao, M. H., Jane, W. N., Chiang, P. W., Chen, C. B., & Chen, C. A. (2011). Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge. Environmental Microbiology, 13. p. 1179
Taylor, M. W., Radax, R., Steger, D., & Wagner, M. (2007). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev, 71. p. 295
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22. p. 4673
Tomitani, A., Knoll, A. H., Cavanaugh, C. M., & Ohno, T. (2006). The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proceedings of the National Academy of Sciences, USA, 103. p. 5442
Turner, S., Pryer, K. M., Miao, V. P., & Palmer, J. D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 46. p. 327
Waterbury, J. B., & Stanier, R. Y. (1978). Patterns of growth and development in Pleurocapsalean cyanobacteria. Microbiology and Molecular Biology Reviews, 42. p. 2
Whitehead, L. F., & Douglas, A. E. (2003). Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. J Exp Biol, 206. p. 3149
Whitton, B. A., & Potts, M. (2000). The ecology of cyanobacteria their diversity in time and space. New York, Boston, Dordrecht, London, Moscow: Kluwer academic publishers.
Wilkinson, C. R. (1983). Net primary productivity in coral reef sponges. Science, 219. p. 410
Wilkinson, C. R., & Fay, P. (1979). Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature, 279. p. 527
Wishart, D. S., & Stothard, P. (2006). Automated bacterial genome analysis and annotation. Current Opinion in Microbiology, 9. p. 505
Woese, C. R. (1987). Bacterial evolution. Microbiol Rev, 51. p. 221
Yamaguchi, M. (1986). Introduction to the study of coral reefs 4--Coral-reef sponges (1) Sponges as destroyers of reef-building corals. Aquabiology, 8. p. 88
Yang, H. L., Lu, C. K., Chen, S. F., & Chen, Y. M. (2010). Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Marine Biotechnology, 12. p. 173
Zehr, J. P., Mellon, M. T., & Hiorns, W. D. (1997). Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology, 143. p. 1443
Zhao, K. H., Zhu, J. P., Deng, M. G., Zhou, M., Storf, M., Parbel, A., & Scheer, H. (2003). Photochromic chromopeptides derived from phycoerythrocyanin: biophysical and biochemical characterization. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 2. p. 741
Zigmantas, D., Hiller, R. G., Sundstrom, V., & Polivka, T. (2002). Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proceedings of the National Academy of Sciences, USA, 99. p. 16760
陳昭倫, 孟培傑, 李宏仁, 湯森林, 陳文明, 王志騰, 宋克義, 盧重光, &
段文宏. (2008). 綠島海域汙染監測及防治與珊瑚礁群聚結構調查. 台灣: 中央研究院生物多樣性中心.