簡易檢索 / 詳目顯示

研究生: 彭郁婷
Peng, Yu-Ting
論文名稱: 利用氣-液及液-液溶膠-凝膠法製備超疏水表面
Construction of Superhydrophobic Surface via Vapor-liquid and Liquid-liquid Sol-gel Processing
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 120
中文關鍵詞: 二甲基矽氧烷(PDMS)四乙基矽(TEOS)超疏水溶膠-凝膠法
外文關鍵詞: superhydrophobicity, tetraethyl orthosilicate (TEOS), sol-gel process, polydimethyl siloxane (PDMS)
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超疏水(或蓮花效應)是大家熟知且廣泛研究的一項課題,其形成的原因主要是表面具有由適當官能基組成或修飾的微米及奈米結構。由於超疏水表面具有大接觸角與極小滑落角之特性(或自潔能力),也被應用在日常生活許多方面上,如玻璃及雨具等。
    目前製造超疏水表面的方法及材料有許多,本研究提出利用氣-液與液-液溶膠-凝膠法反應兩種方式在PDMS與玻璃基板上製備超疏水表面。有關氣-液溶膠-凝膠法反應,本研究係以旋轉塗佈方式將反應物塗佈在高分子PDMS表面,使PDMS膨潤後,藉由氣相催化劑的擴散,在PDMS表層與內部同時反應產生SiO2粒子。而利用液-液相溶膠-凝膠法反應,則是透過潤浸塗佈(dip coating)方式將基材(PDMS與玻璃)置於含有粒子之溶膠-凝膠溶液,使SiO2粒子附著於基板表面。
    由實驗結果顯示,以氣-液溶膠-凝膠法反應所得到的SiO2粒子可以鑲嵌於PDMS基材表面,再經由silane改質過後表面產生皺褶狀結構,進而得到一接觸角160˚之超疏水表面;而以液-液相溶膠-凝膠法反應經潤浸塗佈方式得到的表面,不需再經過改質便可得到一水滴完全無法沾附的超疏水表面,此外,我們藉由降低潤浸塗佈速度與降低粒子在溶液中的分散密度,可得到較透光之表面。

    Superhydrophobicity (or the lotus effect), a well-known phenomenon and widely studied research topic, results from a surface having the micro/nanostructures composed of either proper and/or being modified functional groups. Owing to its larger contact angle (>150o) and smaller sliding angle (<10o) (or self-cleaning), superhydrophobicity has been found in many applications such as rain coat, window and so on.
    There are numerous methods to construct superhydrophobic surface. In this study, we proposed the gas-liquid phase sol-gel process and utilized the liquid-liquid phase sol-gel process to construct superhydrophobic surface on polydimethyl siloxane (PDMS) and/or glass substrates. For the gas-liquid phase sol-gel process, the reactant was spin-coated on the PDMS substrate, followed by the diffusion of the vapours of the reactant and catalyst into the PDMS substrate. For the liquid-liquid phase sol-gel process, the generated hydrophobic SiO2 particles were deposited on the PDMS and glass substrates through dip coating. The results show that the SiO2 particles are formed and inlaid in the PDMS surface via the gas-liquid phase sol-gel process. Two layers of SiO2 particles are prepared and the wrinkle-like structures are obtained on the 2nd layer of SiO2 particles after silane modification. The contact angle of the surface as constructed is approximately 160o. As to the liquid-liquid phase sol-gel process, there is no need for further modification of the surface and the water droplet will not stay on the surface. By lowering the dip coating speed and concentration of the particles in the solution, a translucent superhydrophobic surface can be obtained.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XII 第一章、緒論 1 第二章、文獻回顧 3 2-1、何謂超疏水 3 2-2、超疏水理論 5 2-2-1、Young’s equation 5 2-2-2、Wenzel model 5 2-2-3、Cassie model 6 2-2-4、其他 8 2-3、超疏水表面製備方法 10 2-3-1、粒子堆疊法 (Aggregation/assembly of particles) 10 2-3-2、結晶法 (Crystal growth) 13 2-3-3、蝕刻法 (Differential etching) 13 2-3-4、編織法 (Fibers and textiles) 15 2-3-5、微影技術 (Lithographic techniques) 16 2-3-6、微奈米尺寸孔洞 (micro/nano porous) 18 2-3-7、複合尺寸粗糙表面 (multiple scale roughness) 19 2-3-8、其他 22 2-4、溶膠-凝膠法 (Sol-gel reaction) 23 2-5、表面改質 25 2-5-1、製備粗糙表面並加以改質 26 2-5-2、沉積低表面能物質使堆疊為粗糙表面 27 2-6、轉換超親/疏水表面(Switching surface) 31 2-6-1、機械力轉換表面性質 (Switching by mechanical force) 31 2-6-2、溫度轉換表面性質 (Switching by temperature) 34 2-6-3、溫度及酸鹼值轉換表面性質 (Switching by both temperature and pH value) 35 2-6-4、光轉換表面性質 (Switching by light) 36 2-7、光透式超疏水表面 38 2-8、超疏水未來應用 43 第三章、實驗材料與儀器設備 46 第四章、利用氣-液溶膠-凝膠反應於PDMS基材上製備超疏水表面 54 4-1、反應步驟 54 4-1-1、模組製備 54 4-1-2、第一層反應(first layer reaction) 55 4-1-3、第二層反應(second layer reaction) 56 4-1-4、表面改質 56 4-2、實驗流程 56 4-3、結果與討論 57 4-3-1、第一層反應(first layer reaction) 57 4-3-2、第二層反應(second layer reaction) 59 4-3-3、表面沉積DTS 64 4-4、總結 69 第五章、利用液-液溶膠-凝膠反應製備PDMS與玻璃超疏水表面 71 5-1、反應步驟及取向 71 5-2、潤浸塗佈法 (Dip coating method) 80 5-3、結果與討論 82 5-3-1、PDMS(OH)扮演角色 82 5-3-2、PDMS膨潤效應 84 5-3-3、反應時間之探討 88 5-3-4、不同溶劑稀釋之表面探討 91 5-3-5、不同潤浸塗佈速度之表面探討 94 5-4、總結 97 第六章、未來工作 98 參考文獻 100 附錄A 109 附錄B 112 附錄C 115 附錄D 117 【光罩設計】 117 【晶片清洗】 117 【塗佈光阻】 118 【軟烤】 118 【曝光】 119 【曝後烤】 119 【顯影】 120 【硬烤】 120 【PDMS模具製作】 120

    1.Oner, D. & McCarthy, T.J. "Ultrahydrophobic surfaces. Effects of topography length scales on wettability". Langmuir 16, 7777-7782 (2000).
    2.Barthlott, W. & Neinhuis, C. "Purity of the sacred lotus, or escape from contamination in biological surfaces". Planta 202, 1-8 (1997).
    3.Zorba, V. et al. "Biomimetic Artificial Surfaces Quantitatively Reproduce the Water Repellency of a Lotus Leaf". Advanced Materials 20, 4049-+ (2008).
    4.Kang, X., Zi, W.W., Xu, Z.G. & Zhang, H.L. "Controlling the micro/nano structure of self-cleaning polymer coating". Applied Surface Science 253, 8830-8834 (2007).
    5.Nakajima, A., Hashimoto, K. & Watanabe, T. "Recent studies on super-hydrophobic films". Monatshefte Fur Chemie 132, 31-41 (2001).
    6.Wenzel, R. "Resistance of solid surfaces to wetting by water". Industrial & Engineering Chemistry 28, 988-994 (1936).
    7.Wenzel, R. "Surface Roughness and Contact Angle". The Journal of Physical Chemistry 53, 1466-1467 (1949).
    8.Patankar, N.A. "On the modeling of hydrophobic contact angles on rough surfaces". Langmuir 19, 1249-1253 (2003).
    9.Cassie, A. "Contact angles". Discussions of the Faraday Society 3, 11-16 (1948).
    10.Cassie, A. & Baxter, S. "Wettability of porous surfaces". Transactions of the Faraday Society 40, 546-551 (1944).
    11.Onda, T., Shibuichi, S., Satoh, N. & Tsujii, K. "Super-water-repellent fractal surfaces". Langmuir 12, 2125-2127 (1996).
    12.Bico, J., Marzolin, C. & Quere, D. "Pearl drops". Europhysics Letters 47, 743-744 (1999).
    13.Shang, H.M. et al. "Nanostructured superhydrophobic surfaces". Journal of Materials Science 40, 3587-3591 (2005).
    14.Jeong, H.E., Lee, S.H., Kim, P. & Suh, K.Y. "Stretched polymer nanohairs by nanodrawing". Nano Letters 6, 1508-1513 (2006).
    15.Martines, E. et al. "Superhydrophobicity and superhydrophilicity of regular nanopatterns". Nano Letters 5, 2097-2103 (2005).
    16.Furstner, R., Barthlott, W., Neinhuis, C. & Walzel, P. "Wetting and self-cleaning properties of artificial superhydrophobic surfaces". Langmuir 21, 956-961 (2005).
    17.Ma, M. & Hill, R. "Superhydrophobic surfaces". Current opinion in colloid & interface science 11, 193-202 (2006).
    18.Roach, P., Shirtcliffe, N.J. & Newton, M.I. "Progess in superhydrophobic surface development". Soft Matter 4, 224-240 (2008).
    19.Genzer, J. & Efimenko, K. "Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review". Biofouling 22, 339-360 (2006).
    20.Zhang, X., Shi, F., Niu, J., Jiang, Y.G. & Wang, Z.Q. "Superhydrophobic surfaces: from structural control to functional application". Journal of Materials Chemistry 18, 621-633 (2008).
    21.Verplanck, N., Coffinier, Y., Thomy, V. & Boukherroub, R. "Wettability switching techniques on superhydrophobic surfaces". Nanoscale Research Letters 2, 577-596 (2007).
    22.Li, X.M., Reinhoudt, D. & Crego-Calama, M. "What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces". Chemical Society Reviews 36, 1350-1368 (2007).
    23.Kampes, A. & Tieke, B. "Self-assembly of carboxylated latex particles at charged surfaces: influences of preparation conditions on the state of order of the monolayers". Materials Science & Engineering C-Biomimetic and Supramolecular Systems 8-9, 195-204 (1999).
    24.Zhang, G., Wang, D.Y., Gu, Z.Z. & Mohwald, H. "Fabrication of superhydrophobic surfaces from binary colloidal assembly". Langmuir 21, 9143-9148 (2005).
    25.Lin, J.J., Chu, C.C., Chiang, M.L. & Tsai, W.C. "Manipulating assemblies of high-aspect-ratio clays and fatty amine salts to form surfaces exhibiting a lotus effect". Advanced Materials 18, 3248-+ (2006).
    26.Liu, Y.Y., Chen, X.Q. & Xin, J.H. "Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach". Nanotechnology 17, 3259-3263 (2006).
    27.Tsai, H.J. & Lee, Y.L. "Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces". Langmuir 23, 12687-12692 (2007).
    28.Taurino, R. et al. "Facile preparation of superhydrophobic coatings by sol-gel processes". Journal of Colloid and Interface Science 325, 149-156 (2008).
    29.Shibuichi, S., Onda, T., Satoh, N. & Tsujii, K. "Super water-repellent surfaces resulting from fractal structure". Journal of Physical Chemistry 100, 19512-19517 (1996).
    30.Wang, S.T., Feng, L. & Jiang, L. "One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces". Advanced Materials 18, 767-+ (2006).
    31.Cao, Z.W. et al. "Superhydrophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with [Ag(NH3)(2)]OH". Chemical Communications, 2692-2694 (2008).
    32.Jin, M.H. et al. "Super-hydrophobic PDMS surface with ultra-low adhesive force". Macromolecular Rapid Communications 26, 1805-1809 (2005).
    33.Tserepi, A.D., Vlachopoulou, M.E. & Gogolides, E. "Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces". Nanotechnology 17, 3977-3983 (2006).
    34.Zhu, L., Feng, Y.Y., Ye, X.Y. & Zhou, Z.Y. "Tuning wettability and getting superhydrophobic surface by controlling surface roughness with well-designed microstructures". Sensors and Actuators a-Physical 130, 595-600 (2006).
    35.Yuan, J.K. et al. "Superwetting nanowire membranes for selective absorption". Nature Nanotechnology 3, 332-336 (2008).
    36.Lim, J.M., Yi, G.R., Moon, J.H., Heo, C.J. & Yang, S.M. "Superhydrophobic films of electrospun fibers with multiple-scale surface morphology". Langmuir 23, 7981-7989 (2007).
    37.Zhu, Y. et al. "Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive enviromnents". Advanced Functional Materials 16, 568-574 (2006).
    38.Sarkar, S., Chunder, A., Fei, W.F., An, L.N. & Zhai, L. "Superhydrophobic mats of polymer-derived ceramic fibers". Journal of the American Ceramic Society 91, 2751-2755 (2008).
    39.Khoo, H.S. & Tseng, F.G. "Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures". Nanotechnology 19, - (2008).
    40.Liu, B., He, Y.N., Fan, Y. & Wang, X.G. "Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting". Macromolecular Rapid Communications 27, 1859-1864 (2006).
    41.Huang, X.J., Lee, J.H., Lee, J.W., Yoon, J.B. & Choi, Y.K. "A one-step route to a perfectly ordered wafer-scale microbowl array for size-dependent superhydrophobicity". Small 4, 211-216 (2008).
    42.Pozzato, A. et al. "Superhydrophobic surfaces fabricated by nanoimprint lithography". Microelectronic Engineering 83, 884-888 (2006).
    43.Wang, H., Dai, D. & Wu, X.D. "Fabrication of superhydrophobic surfaces on aluminum". Applied Surface Science 254, 5599-5601 (2008).
    44.Ming, W., Wu, D., van Benthem, R. & de With, G. "Superhydrophobic films from raspberry-like particles". Nano Letters 5, 2298-2301 (2005).
    45.Zhang, L.B., Chen, H., Sun, J.Q. & Shen, J.C. "Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate-facile method to prepare a superhydrophobic surface". Chemistry of Materials 19, 948-953 (2007).
    46.Zhao, Y., Li, M., Lu, Q.H. & Shi, Z.Y. "Superhydrophobic Polyimide Films with a Hierarchical Topography: Combined Replica Molding and Layer-by-Layer Assembly". Langmuir 24, 12651-12657 (2008).
    47.Yang, J.X. et al. "A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane". Applied Surface Science 255, 3507-3512 (2009).
    48.Jeong, H.E., Lee, S.H., Kim, J.K. & Suh, K.Y. "Nanoengineered multiscale hierarchical structures with tailored wetting properties". Langmuir 22, 1640-1645 (2006).
    49.Bhushan, B., Koch, K. & Jung, Y.C. "Biomimetic hierarchical structure for self-cleaning". Applied Physics Letters 93, - (2008).
    50.Gao, X.F. et al. "The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography". Advanced Materials 19, 2213-+ (2007).
    51.Zhang, J.L., Li, J.A. & Han, Y.C. "Superhydrophobic PTFE surfaces by extension". Macromolecular Rapid Communications 25, 1105-1108 (2004).
    52.Genzer, J. & Efimenko, K. "Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers". Science 290, 2130-2133 (2000).
    53.Rao, K.S., El-Hami, K., Kodaki, T., Matsushige, K. & Makino, K. "A novel method for synthesis of silica nanoparticles". Journal of Colloid and Interface Science 289, 125-131 (2005).
    54.Mine, E., Nagao, D., Kobayashi, Y. & Konno, M. "Solvent effects on particle formation in hydrolysis of tetraethyl orthosilicate". Journal of Sol-Gel Science and Technology 35, 197-201 (2005).
    55.Shirtcliffe, N.J., McHale, G., Newton, M.I. & Perry, C.C. "Intrinsically superhydrophobic organosilica sol-gel foams". Langmuir 19, 5626-5631 (2003).
    56.Yang, S.Y., Chen, S., Tian, Y., Feng, C. & Chen, L. "Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process". Chemistry of Materials 20, 1233-1235 (2008).
    57.Kim, S.H. "Fabrication of superhydrophobic surfaces". Journal of Adhesion Science and Technology 22, 235-250 (2008).
    58.Xiu, Y., Zhu, L., Hess, D.W. & Wong, C.P. "Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity". Nano Letters 7, 3388-3393 (2007).
    59.Wu, L.Y.L., Tan, G.H., Zeng, X.T., Li, T.H. & Chen, Z. "Synthesis and characterization of transparent hydrophobic sol-gel hard coatings". Journal of Sol-Gel Science and Technology 38, 85-89 (2006).
    60.Zhao, N. et al. "Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution". Macromolecules 38, 8996-8999 (2005).
    61.Xiu, Y., Zhu, L., Hess, D. & Wong, C. "Superhydrophobic silicone/PTFE films for biocompatible application in encapsulation of implantable microelectronics devices". Electronic Components and Technology Conference, 56th 1-2, 7 (2006).
    62.Han, J.T., Lee, D.H., Ryu, C.Y. & Cho, K.W. "Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding". Journal of the American Chemical Society 126, 4796-4797 (2004).
    63.Xiu, Y.H., Hess, D.W. & Wong, C.P. "UV-Resistant and Superhydrophobic Self-Cleaning Surfaces Using Sol-Gel Processes". Journal of Adhesion Science and Technology 22, 1907-1917 (2008).
    64.Zhang, J.L., Lu, X.Y., Huang, W.H. & Han, Y.C. "Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide". Macromolecular Rapid Communications 26, 477-480 (2005).
    65.Lee, J., He, B. & Patankar, N.A. "A roughness-based wettability switching membrane device for hydrophobic surfaces". Journal of Micromechanics and Microengineering 15, 591-600 (2005).
    66.Sun, T.L. et al. "Reversible switching between superhydrophilicity and superhydrophobicity". Angewandte Chemie-International Edition 43, 357-360 (2004).
    67.Shirtcliffe, N.J., Mchale, G., Newton, M.I., Perry, C.C. & Roach, P. "Porous materials show superhydrophobic to superhydrophilic switching". Chemical Communications, 3135-3137 (2005).
    68.Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C. & Roach, P. "Superhydrophobic to superhydrophilic transitions of sol-gel films for temperature, alcohol or surfactant measurement". Materials Chemistry and Physics 103, 112-117 (2007).
    69.Xia, F. et al. "Dual-responsive surfaces that switch superhydrophilicity and superhydrophobicity". Advanced Materials 18, 432-+ (2006).
    70.Lim, H.S., Kwak, D., Lee, D.Y., Lee, S.G. & Cho, K. "UV-Driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity". Journal of the American Chemical Society 129, 4128-+ (2007).
    71.Sun, W.T., Zhou, S.Y., Chen, P. & Peng, L.M. "Reversible switching on superhydrophobic TiO2 nano-strawberry films fabricated at low temperature". Chemical Communications, 603-605 (2008).
    72.Feng, X.J. et al. "Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films". Journal of the American Chemical Society 126, 62-63 (2004).
    73.Wu, Y.Y., Sugimura, H., Inoue, Y. & Takai, O. "Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma-enhanced CVD at low substrate temperatures". Thin Solid Films 435, 161-164 (2003).
    74.Ishizaki, T., Saito, N., Inoue, Y., Bekke, M. & Takai, O. "Fabrication and characterization of ultra-water-repellent alumina-silica composite films". Journal of Physics D-Applied Physics 40, 192-197 (2007).
    75.Teshima, K., Sugimura, H., Inoue, Y., Takai, O. & Takano, A. "Ultra-water-repellent poly(ethylene terephthalate) substrates". Langmuir 19, 10624-10627 (2003).
    76.Yabu, H. & Shimomura, M. "Single-step fabrication of transparent superhydrophobic porous polymer films". Chemistry of Materials 17, 5231-5234 (2005).
    77.Bravo, J., Zhai, L., Wu, Z.Z., Cohen, R.E. & Rubner, M.F. "Transparent superhydrophobic films based on silica nanoparticles". Langmuir 23, 7293-7298 (2007).
    78.Kim, M., Kim, K., Lee, N.Y., Shin, K. & Kim, Y.S. "A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold". Chemical Communications, 2237-2239 (2007).
    79.Han, J.T., Kim, S.Y., Woo, J.S. & Lee, G.W. "Transparent, Conductive, and Superhydrophobic Films from Stabilized Carbon Nanotube/Silane Sol Mixture Solution". Advanced Materials 20, 3724-+ (2008).
    80.Takei, G., Nonogi, M., Hibara, A., Kitamori, T. & Kim, H.B. "Tuning microchannel wettability and fabrication of multiple-step Laplace valves". Lab on a Chip 7, 596-602 (2007).
    81.Chunder, A., Etcheverry, K., Londe, G., Cho, H.J. & Zhai, L. "Conformal switchable superhydrophobic/hydrophilic surfaces for microscale flow control". Colloids and Surfaces a-Physicochemical and Engineering Aspects 333, 187-193 (2009).
    82.Jokinen, V., Sainiemi, L. & Franssila, S. "Complex droplets on chemically modified silicon nanograss". Advanced Materials 20, 3453-+ (2008).
    83.Guo, S.S. et al. "Patterning of hydrophilic micro arrays with superhydrophobic surrounding zones". Microelectronic Engineering 84, 1673-1676 (2007).
    84.Blossey, R. "Self-cleaning surfaces - virtual realities". Nature Materials 2, 301-306 (2003).
    85.Jheng, Z.J., Fang, Y.C., Lo, K.F. & Juang, Y.J. "Reinforcement of a poly(dimethyl siloxane) mold with high aspect ratio microstructures via a gas-liquid phase sol-gel process". Journal of Micromechanics and Microengineering 19, - (2009).
    86.Vacassy, R., Flatt, R.J., Hofmann, H., Choi, K.S. & Singh, R.K. "Synthesis of microporous silica spheres". Journal of Colloid and Interface Science 227, 302-315 (2000).
    87.Golub, A.A., Zubenko, A.I. & Zhmud, B.V. "gamma-APTES modified silica gels: The structure of the surface layer". Journal of Colloid and Interface Science 179, 482-487 (1996).
    88.Wang, X.G., Tseng, Y.H., Chan, J.C.C. & Cheng, S.F. "Catalytic applications of aminopropylated mesoporous silica prepared by a template-free route in flavanones synthesis". Journal of Catalysis 233, 266-275 (2005).
    89.Pasternack, R.M., Amy, S.R. & Chabal, Y.J. "Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature". Langmuir 24, 12963-12971 (2008).
    90.Galliano, A., Bistac, S. & Schultz, J. "Adhesion and friction of PDMS networks: molecular weight effects". Journal of Colloid and Interface Science 265, 372-379 (2003).
    91.Ginn, B.T. & Steinbock, O. "Polymer surface modification using microwave-oven-generated plasma". Langmuir 19, 8117-8118 (2003).
    92.Galliano, A., Bistac, S. & Schultz, J. "The role of free chains in adhesion and friction of poly(dimethylsiloxane) (PDMS) networks". Journal of Adhesion 79, 973-991 (2003).
    93.Hillborg, H. et al. "Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques". Polymer 41, 6851-6863 (2000).
    94.Probstein, R.F. Physicochemical hydrodynamics (John Wiley & Sons, New York, 1994).

    下載圖示 校內:2012-06-26公開
    校外:2012-06-26公開
    QR CODE