| 研究生: |
林群哲 Lin, Chun-Che |
|---|---|
| 論文名稱: |
微晶片電泳系統之自動化及線上濃縮 Automation and On-Line Concentration on Microchip Electrophoresis System |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 自動化 、晶片型電泳 、帶變寬效應 、連續壓力取樣法 、進樣誤差 、線上濃縮 、Kohlrausch regulation function 、等速電泳 、廢液移除 |
| 外文關鍵詞: | automation, band broadening effect., Kohlrausch regulating function, waste-removing function, isotochiphoresis, on-line concentration, microchip electrophoresis, flow-through sampling, injection bias |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發展並整合微型化分析系統在現代分析化學中是極為重要且有助益的,因其具有可降低成本、易於自動化及高分析效率等優點。微型化分析系統目前已被廣泛應用在生化分析、藥物篩選及化學反應等領域上。然而,將系統微型化通常會伴隨一些問題並且會面臨到實用性的挑戰。例如,在晶片型電泳中,電壓進樣法由於具有便利及易於操作的特點,使得它成為最為廣用的進樣法。但以電壓法進樣時,卻經常伴隨著進樣誤差(injection bias)及對中性分析物進樣效率差的缺點。晶片型電泳的另一個問題是以光學法偵測分析物時,由於晶片可容許的進樣量低及蝕刻管道的光路短,使得偵測靈敏度通常無法達到實際要求。本研究的目的便是要在晶片型電泳上發展一套連續自動化取樣系統及線上濃縮法來解決上文所提之進樣及靈敏度的問題。
在晶片型電泳中,取樣是相當重要的步驟,因為此步驟將直接影響分析結果。本研究的第一個主題便是要以連續壓力取樣法(flow-through sampling)為基礎,發展出一套可在單一晶片上連續分析不同樣品的自動取樣系統。在此系統中,我們將原本針對高效能液相層析系統所設計的自動取樣器串聯到電泳晶片上,並且將整個實驗流程,包括取樣(sampling)、進樣(injection)、分析、訊號擷取及清洗等步驟完全自動化。在實驗中,不同濃度的鹽基桃紅精(Rhodamine B)經由自動取樣器取樣後,以水壓法(hydrodynamic flow)將之傳送至晶片中,然後依序被進樣至微管道中分析,而從自動取樣器取得的每一個樣品(0.2-1.0µL)則可供多次的進樣(1-10nL)及電泳分析。此外,系統中的連接管柱所造成的變異(variance)雖然不會影響電泳分析結果,卻會造成管柱外樣品的擴散及稀釋,因此我們亦針對整個系統的變異做理論推導。本研究結果顯示,相較於傳統的手動電壓進樣法,本系統之自動化取樣、清洗連接管柱及微管道除可免除人為操作外,所需樣品量及處理時間均大為減少。
傳統晶片型電泳由於不同晶片間的差異、重新置換樣品、微管道操作條件的重新建立及電壓進樣誤差等原因,在定量分析上一直無法有很好的表現。本研究的第二個主題便是要整合第一部份所發展的自動化連續壓力取樣系統的優點與廢液移除裝置,以改善傳統電泳型晶片在定量分析效能上的不足並且延長系統操作時間。研究結果顯示以異硫氰酸熒光素標記之雌激素(FITC-labeled estrogen)或鹽基桃紅精為分析物,此整合裝置在超過三小時(360次分析)的操作時間下,仍然具有相當好的再現性(R.S.D<6.6%)。另外,針對一系列濃度的磷酸化胜肽(phosphopeptide)建立校正曲線後發現,在不使用內標準品的情況下,線性(R2)及再現性分別為0.9961及3.16%;而在使用內標準品(non-phosphopeptide)的情況下,線性及再現性則稍微改善為0.9986及2.27%。我們亦針對此系統之定量分析法在激酶磷酸化分析(kinase phosphorylation assay)上的應用做一簡短的討論。
由於可容納樣品體積少及蝕刻管道的光徑短,使得微晶片電泳的靈敏度在以光學偵測器為偵測手段時受到限制。在本研究的第三個主題,我們發展了一套整合型微流體裝置,50nL的DNA樣品被壓力注射到微管道內並被等速電泳法濃縮成很窄的帶寬,之後,此濃縮樣品被導入一均勻的膠電泳管道進行分離及偵測。此設計提供了可使用不同分離介質的可能性,在本研究中,我們使用了一種黏度大於前導離子緩衝液的分離介質來分離濃縮後的DNA標準品,結果顯示此DNA標準品可在1.5公分內被分離,並且由於黏度的關係還造成了更進一步的濃縮效應。相較於傳統膠電泳晶片,本研究所發展之等速膠電泳晶片在可忽略的分離度損失下,靈敏度提升了150倍而分離時間則減少了一半。此外,相較於其它預濃縮方法,等速電泳的一個獨特優點是其具有提升具大範圍濃度差異之分析物的偵測能力,我們導出了一套整合了Kohlrausch regulation function (KRF)及帶變寬效應(band broadening effect)的理論來解釋所觀察到的現象。我們亦將此特性應用在一個聚合酶連鎖反應(polymerase chain reaction,PCR)樣品上,此樣品含有放大效應相差甚大之兩段聚合酶連鎖反應產物。而結果顯示此等速膠電泳晶片可對放大效應較差的一段產物有較佳的濃縮效果,使得在同時偵測兩段放大效應相差甚多之產物的信心度提升。
Development and integration of miniaturized analytical system in modern analytical chemistry is of great importance and beneficial due to the reduced cost, ease of automation, and high analysis efficiency and so on. The miniaturized analytical system, which is widely known as microdevice, has been applied in many fields including bioanalysis, drug screening, and chemical reactions, etc. However, problems accomplished with the miniaturization arise and challenge the practicability of microdevices. In microchip electrophoresis, for example, sampling is typically realized by electrokinetic injection because of the simplification. Electrokinetic injection, however, usually accomplished with injection bias and low injection efficiency for neutral analytes. Another problem of microchip electrophoresis is the poor sensitivity due to the low sample loadability and shallow depth of microchannels for optical detection. The target of this study is to solve the sampling and sensitivity problems of microchip electrophoresis by using flow-through based automatic sampling method and on-line concentration technology, respectively.
Sampling is a critical step in microchip electrophoresis because it affects the analytical results in a straightforward way in the very early stage of analysis. The first study (Chapter 4) is to develop an automatic sampling system based on flow-through sampling for sequential analysis of different samples in a single microchip. An autosampler, which was originally designed for high performance liquid chromatography (HPLC), was on-line connected to the microchip and the whole process including sample loading and injection, analysis and data acquisition as well as washing were all automated. Rhodamine B at different concentrations was first loaded into a hydrodynamic flow stream by the autosampler, delivered to the microchip, and then sequentially injected into the electrophoretic microchannels for analysis and detection. Using this sampling system, each loaded volume (0.2-1.0µL) can be injected for dozens of electrophoretic analyses (1-10nL for each injection). In addition, the variances caused by the external connections, which did not affect the electrophoretic analysis but would cause band broadening of the loaded sample in the hydrodynamic flow stream, were theoretically deduced. Such a design allows sequential analysis of a series of samples while the running buffer is continuously pumped into the connection capillary as well as microchannels for washing without human intervention. Using this sampling system, the required sample amount and handling time can be greatly reduced compared to the manual electrokinetic injection method.
Quantitative analysis is problematic for microchip electrophoresis for several reasons including chip-to-chip variation, discontinuous sample re-loading, channel reconditioning, and electrokinetic injection bias. In the second study (Chapter 5), the flow-through based automatic microchip electrophoresis system developed in the first study was integrated with the waste-removing function to demonstrate a more quantifiable and more reproducible performance than manual electrokinetic injection method for quantitative analysis and prolong the analysis time. Using the flow-through microchip with waste-removing function, FITC-labeled estrogen or Rhodamine B could be continuously analyzed without significant changes (R.S.D. < 6.6%) in signal intensity for over 3 h (360 analyses), which is sufficient for a complete set of quantitative analysis. With the use of a phosphorylated kinase substrate as the model, a calibration curve for quantitative analysis of phosphopeptides were constructed and results indicate that both R2 value of the linearity and R.S.D. values of the peak intensity were around 0.9961 and 3.16%, respectively, without the use of an internal standard. These values were slightly improved to be around 0.9986 and 2.27%, respectively, with the use of a non-phosphopeptide counterpart as the internal standard. The potential of this flow-through system for the development of a kinase phosphorylation assay based on the quantitative method was also briefly discussed.
Due to the low sample loadability and shallow depth of microchannels, the sensitivity of microchip electrophoresis is limited, especially when optical detector is used for detection. In the third study (Chapter 6), we demonstrated an integrated microfluidic device in which 50nL of DNA sample is hydrodynamically injected and concentrated by isotachophoresis (ITP) into narrow bands and then subsequently introduced into a homogeneous gel electrophoresis (GE) channel for separation and detection. This design renders flexibilities in choosing different buffers for separation regardless of the stacking buffers used. In this study, a sieving gel buffer with a higher viscosity than the leading buffer was utilized to separate DNA markers in a short distance (1.5 cm) as well as to cause a further stacking as the sample zone enters the separation channel. Compared to conventional microchip gel electrophoresis (MGE), the sensitivity of ITP-GE microchip was increased by 150-fold and the separation time was reduced by 2-fold without noticeable loss in resolution for the fragments of X 174 digest. In addition, compared to other pre-concentration methods, one unique advantage of ITP stacking is the enhancement of detection capability for samples with a wide dynamic range. This observation is explained based on a model derived from Kohlrausch regulating function (KRF) coupled with the band broadening effect occurred during the separation by gel electrophoresis. We further demonstrated that such characteristics is useful for detecting two products amplified from a multiplex polymerase chain reaction (PCR) in which one product is poorly amplified compared to the other and the much more enhanced S/N ratio for the weak signal than for the strong signal has greatly increased the confidence for detecting both products.
1. Rodriguez I., Chandrasekhar N. “Experimental Study and Numerical Estimation of Current Changes in Electroosmotically Pumped Microfluidic Devices” Electrophoresis 26(6), 1114-1121 (2005)
2. Macia, A., Borrull, F., Calull, M., Aguilar, C. “Different Sample Stacking Strategies to Analyse Some Nonsteroidal Anti-Inflammatory Drugs by Micellar Electrokinetic Capillary Chromatography in Mineral Waters” J. Chromatogr. A 1117 (2), 234-245 (2006)
3. Kang, D., Chungb, D. S., Kangc, S. H., Kim, Y. “Separation of DNA with Hydroxypropylmethyl Cellulose and Poly(ethylene oxide) by Capillary Gel Electrophoresis” Microchem. J. 80, 121– 125 (2005)
4. Lu, J. J., Liu, S. R., Pu, Q. S. “Replaceable Cross-Linked Polyacrylamide for High Performance Separation of Proteins” J. Proteome. Res. 4 (3), 1012-1016 (2005)
5. Kvasnička, F., Ševčík, R., Voldřich, M. “Determination of Domoic Acid by On-Line Coupled Capillary Isotachophoresis with Capillary Zone Electrophoresis” J. Chromatogr. A 1113 (1-2), 255-258 (2006)
6. Figey, D., Pinto, D. “Lab-on-a-Chip: A Revolution in Biological and Medical Sciences” Anal. Chem. 72, 330A-335A (2000)
7. Koskinen, J. O., Meltola, N. J., Soini, E., Soini, A. E. “A Lab-on-a-Chip Compatible Bioaffinity Assay Method for Human Alpha-Fetoprotein” Lab Chip 5 (12), 1408-1411 (2005)
8. Cleary, A., Garcia-Blanco, S., Glidle, A., Aitchison, J. S., Laybourn, P., Cooper, J. M. “An Integrated Fluorescence Array as a Platform for Lab-on-a-Chip Technology Using Multimode Interference Splitters” IEEE Sens. J. 5 (6), 1315-1320 (2005)
9. Shih, C. Y., Chen, Y., Li, W., Xie, J., He, Q., Tai, Y. C. “An Integrated System for On-Chip Temperature Gradient Interaction Chromatography” Sens. Actuators A 127, 207–215 (2006)
10. Terry, S. C., Jerman, J. H., Angell, J. B. “A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer” IEEE T. Electron. Dev. 26, 1880-1886 (1997)
11. Jacobson, S. C., Hergenroder, R., Moore, A. W., Ramsey, J. M. “Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip” Anal. Chem. 66, 4127-4132 (1994)
12. Jacobson, S. C., Kounty, L. B., Hergenroder, R., Moore, A. W., Ramsey, J. M. “Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor” Anal. Chem. 66, 3472-3476 (1994)
13. Jacobson, S. C., Hergenroder, R., Koutny, L. B., Ramsey, J. M. “High-Speed Separations on a Microchip” Anal. Chem. 66, 1114-1118 (1994)
14. Zhang, C. S., Xu, J. L., Ma, W. L., Zheng, W. L. “PCR Microfluidic Devices for DNA Amplification” Biotechnol. Adv. 24 (3), 243-284 (2006)
15. Wang, C., Oleschuk, R., Ouchen, F., Li, J., Thibault, P., Harrison, D. J. “Integration of Immobilized Trypsin Bead Beds for Protein Digestion within a Microfluidic Chip Incorporating Capillary Electrophoresis Separations and an Electrospray Mass Spectrometry Interface” Rapid Commun. Mass Spectrom. 14, 1377-1383 (2000)
16. Lee, G.. B., Chen, S. H., Lin, C. S., Huang, G.. R., Lin, Y. H. “Microfabricated Electrophoresis Chips on Quartz Substrates and Their Applications on DNA Analysis ” J. Chin. Chem. Soc. 48, 1123-1128 (2001)
17. Ruano-López, J. M., Aguirregabiria, M., Tijero, M., Arroyo, M. T., Elizalde, J., Berganzo, J., Aranburu, I., Blanco, F. J., Mayora, K. “A New SU-8 Process to Integrate Buried Waveguides and Sealed Microchannels for a Lab-on-a-Chip” Sens. Actuators B 114(1), 542-551 (2006)
18. Shams-el-Din, M. A., Wochnowski, C., Metev, S., Hamza, A. A., Juptner, W. “Determination of the Refractive Index Depth Profile of an UV-Laser Generated Waveguide in a Planar Polymer Chip” Appl. Surf. Sci. 236 (1-4), 31-41 (2004)
19. Young, K. C., Lien, H. M., Lin, C. C., Chang, T. T., Lee, G. B., Chen, S. H. “Microchip and Capillary Electrophoresis for Quantitative Analysis of Hepatitis C Virus Based on RT-competitive PCR ” Talanta 56, 323-330 (2000)
20. Chen, Y. H., Chen, S. H. “Analysis of DNA Fragments by Microchip Electrophoresis Fabricated on Poly(methyl methacrylate) Substrates Using a Wire-Imprinting Method ” Electrophoresis 21, 165-170 (2000)
21. Chen, S. H., Sung, W. C., Lee, G. B., Lin, Z. Y., Chen, P. W., Liao, P. C. “Plastic Microchip Electrophoresis for Genetic Screening: The Analysis of Polymerase Chain Reactions Products of Fragile X (CGG)n Alleles” Electrophoresis 22, 1188-1193 (2001)
22. Harrison, J. D., Manz, A., Fan, Z. H., Ludi, J., Widmer, H. M. “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip” Anal. Chem. 64, 1926-1932 (1992)
23. Effenhauser, C. S., Manz, A., Widmer, H. M. ” Glass Chips for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights “ Anal. Chem. 65, 2637-2642 (1993)
24. Jacobson, S. C., Hergnroder, R., Kounty, L. B., Warmack, R. J., Ramsey, J. M. “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices” Anal. Chem. 66, 1107-1113 (1994)
25. Attiya, S., Jemere, A. B., Tang, T., Fitzpatrick, G.., Seiler, K., Chiem, N., Harrison, D. J. “Design of an Interface to Allow Microfluidic Electrophoresis Chips to Drink from the Fire Hose of the External Environment” Electrophoresis, 22, 318-327 (2001)
26. Chien, R. L. Presented at the 15th International Symposium on Microscale Separations and Analysis, Stocknolm, Sweden, poster p66, 13-18, April 2002.
27. Kerby, M., Tripathi, A., Chien, R. L. Presented at the 15th International Symposium on Microscale Separations and Analysis, Stockholm, Sweden, poster p67, 13-18 April 2002.
28. Lin, Y. H., Lee, G. B., Li, C. W., Huang, G. R., Chen, S. H. “Flow-Through Sampling for Electrophoresis-Based Microfluidic Chips Using Hydrodynamic Pumping” J. Chromatogr. A 937, 115-125 (2001)
29. Chen, S. H., Lin, Y .H., Wang, L. Y., Lin, C. C., and Lee, G. B. “Flow-Through Sampling for Electrophoresis-Based Microchips and Their Applications for Protein Analysis” Anal. Chem. 74, 5146-5153 (2002)
30. Giddings, J. C. “Dynamics of Chromatography” Marcel Dekker, N. Y. (1965)
31. Sternberg, J. C. Giddings, J. C., Keller, R. A., Eds. “In Advances in Chromatography” Marcel Dekker, New York, 2, 205-270 (1966)
32. Karger, B. L., Snyder, L. R., Horvath, C. “An Introduction to Separation Science” 77 (1973)
33. Fang, Q., Xu, G. M., Fang, Z. L. “A High-Throughput Continuous Sample Introduction Interface for Microfluidic Chip-based Capillary Electrophoresis Systems” Anal. Chem. 74, 1223-1231 (2002)
34. He, Q. H., Fang, Q., Du, W. B., Huang, Y. Z., Fang, Z. L. “An Automated Electrokinetic Continuous Sample Introduction System For Microfluidic Chip-Based Capillary Electrophoresis” Analyst 130, 1052-1058 (2005)
35. Crabtree, H. J., Cheong, E. C. S., Tilroe, D. A., Backhouse, C. J. “Microchip Injection and Separation Anomalies Due to Pressure Effects” Anal. Chem. 73, 4079-4086 (2001)
36. Marth, J. D., Peet, R., Krebs, E. G., Perlmutter, R. M. “Lymphocyte-Specific Protein-Tyrosine Kinase Gene is Rearranged and Over-Expressed in the Murine T Cell Lymphoma LSTRA” Cell 43, 393–404 (1985)
37. Chien, R. L. “Sample Stacking Revisited:A Personal Perspective” Electrophoresis 24, 486–497 (2003)
38. Lin, C. C., Lee, G. B., Chen, S. H. “Automation for Continuous Analysis on Microchip Electrophoresis Using Flow-Through Sampling” Electrophoresis 23, 3550–3557 (2002)
39. Lin, C. C., Chen, C. C., Lin, C. E., Chen, S. H. “Microchip Electrophoresis with Hydrodynamic Injection and Waste-Removing Function for Quantitative Analysis” Journal of Chromatogr. A 1051, 69–74 (2004)
40. Palmer, J., Munro, N. J., Landers, J. P. “A Universal Concept for Stacking Neutral Analytes in Micellar Capillary Electrophoresis” Anal. Chem. 71, 1679-1687 (1999)
41. Palmer, J., Burgi, D. S., Munro, N. J., Landers, J. P. “Electrokinetic Injection for Stacking Neutral Analytes in Capillary and Microchip Electrophoresis” Anal. Chem. 73, 725-731 (2001)
42. Yang, H., Chien, R. L. “Sample Stacking in Laboratory-on-a-Chip Devices” J. Chromatogr. A 924, 155–163 (2001)
43. Beard, N. P., Zhang, C. X., deMello, A. J. “In-Column Field-Amplified Sample Stacking of Biogenic Amines on Microfabricated Electrophoresis Devices “ Electrophoresis 24, 732–739 (2003)
44. Jung, B., Bharadwaj, R., Santiago, J. G. “Thousandfold Signal Increase Using Field-Amplified Sample Stacking for On-Chip Electrophoresis” Electrophoresis 24, 3476–3483 (2003)
45. Seram, Y., Matsubara, N., Otsuka, K., Terabe, S. “Sweeping on a Microchip: Concentration Profiles of the Focused Zone in Micellar Electrokinetic Chromatography” Electrophoresis 22, 3509-3513 (2001)
46. Xiong, Y., Park, S. R., Swerdlow, H. “Base Stacking: pH-Mediated On-Column Sample Concentration for Capillary DNA Sequencing” Anal. Chem. 70, 3605-3611 (1998)
47. Kim, D. K., Kang, S. H. “On-Channel Base Stacking in Microchip Capillary Gel Electrophoresis for High-Sensitivity DNA Fragment Analysis” J. Chromatogr. A 1064, 121–127 (2005)
48. Song, S., Singh, A. K., Kirby. B. J. “Electrophoretic Concentration of Proteins at Laser-Patterned Nanoporous Membranes in Microchips” Anal. Chem. 76, 4589-4592 (2004)
49. Bodor, R., Žύborová, M., Ölvecká, E., Madajová, V., Masár, M., Kaniansky, D., Stanislawski, B. “Isotachophoresis and Isotachophoresis-Zone Electrophoresis of Food Additives on a Chip with Column-Coupling Separation Channels” J. Sep. Sci. 24, 802-809 (2001)
50. Wainright, A., Williams, S. J., Ciambrone, G., Xue, Q., Wei, J. “Sample Preconcentration by Isotachophoresis in Microfluidic Devices” J. Chromatogr. A 979, 69–80 (2002)
51. Jeong, Y., Choi, K., Kang, M. K., Chun, K., Chung, D. S. “Transient Isotachophoresis of Highly Saline Samples Using a Microchip” Sensors and Actuators B 104,269–275 (2005)
52. Wainright, A., Uyen T., Tor, N., Bjornson, L., Boone, T. D. “Preconcentration and Separation of Double-Stranded DNA Fragments by Electrophoresis in Plastic Microfluidic Devices” Electrophoresis 24, 3784–3792 (2003)
53. Xu, Z. Q., Hirokawa, T., Nishineb, T., Araib, A. “High-Sensitivity Capillary Gel Electrophoretic Analysis of DNA Fragments on an Electrophoresis Microchip Using Electrokinetic Injection with Transient Isotachophoretic Preconcentration” J. Chromatogr. A 990, 53–61 (2003)
54. Everaerts, F. M., Verheggen, Th. P. E. M., Mikkers, F. E. P. “High-Performance Zone Electrophoresis” J. Chromatogr. 169, 21-38 (1979)
55. Verheģģen, T. P. E. M., Schoots, A. C., Everaerts, F. M. “Feasibility of Capillary Zone Electrophoresis with Suppression of Electroendoosmotic Flow in Completely Closed System” J. Chromatogr. 503, 245-255 (1990)
56. Jung, B., Bharadwaj, R., Santiago, J. G. “On-Chip Millionfold Sample Stacking Using Transient Isotachophoresis” Anal. Chem. 78, 2319-2327 (2006)
57. Huang, X., Gordon, M. J., Zare, R. N. “Bias in Quantitative Capillary Zone Electrophoresis Caused by Electrokinetic Sample Iinjection” Anal. Chem. 60, 375-377 (1988)
58. Chen, L., Prest, J. E., Fielden, P. R., Goddard, N. J., Manz, A., Day, P. J. R.
“Miniaturised Isotachophoresis Analysis” Lab Chip 6, 474-487 (2006)
59. Kohlrausch, F. “Ueber Concentrations-Verschiebungen durch Electrolyse im Inneren von Lösungen und Lösungsgemischen” Ann. Phys. 62, 209-239 (1897)
60. Church, M. N., Spear, J. D., Russo, R. E., Klunder G. L., Grant P. M., Anderson, B. D. “Transient Isotachophoretic-Electrophoretic Separations of Lanthanides with Indirect Laser-Induced Fluorescence Detection” Anal. Chem. 70, 2475-2480 (1998)
61. Lee G. B., Chen S. H., Huang G. R., Sung W. C., Lin Y. H. “Microfabricated Plastic Chips by Hot Embossing Methods and Their Applications for Separation and Detection” Sensors and Actuators B: Chemical 75(1),142-148 (2001)
62. Roberts M. A., Rossier J. S., Bercier P., Girault H. “UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems” Anal. Chem. 69, 2035-2042 (1997)
63. Mazereeuw, M., Tjaden, U. R. “Single Capillary Isotachophoresis-Zone Electrophoresis:Current Practice and Prospects, a Review” J. Chromatogr. Sci. 33, 686-697 (1995)
64. Stellwagen, N. C. “Agarose Gel Pore Radii Are Not Dependent on the Casting Buffer” Electrophoresis 13, 601-603 (1992)
65. Stellwagen N. C., Gelfi, C., Righetti, P. G. “The Free Solution Mobility of DNA” Biopolymers 42, 687–703 (1997)