簡易檢索 / 詳目顯示

研究生: 邱尚奕
Chiu, Shang-Yi
論文名稱: 蝴蝶蘭高密度遺傳圖譜之建立
Construction of a high-density genetic linkage map for Phalaenopsis spp.
指導教授: 陳虹樺
Chen, Hong-Hwa
共同指導教授: 吳文鑾
Wu, Wen-Luan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 65
中文關鍵詞: 遺傳連鎖圖譜連鎖分析分子標誌輔助育種分子標誌蝴蝶蘭簡單重複序列分子標誌單一核苷酸多型性分子標誌
外文關鍵詞: genetic map, linkage analysis, marker-assisted selection (MAS), molecular marker, Phalaenopsis, simple sequence repeat (SSR), single nucleotide polymorphism (SNP)
相關次數: 點閱:144下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝴蝶蘭 (Phalaenopsis spp., 2N=38) 為蘭科多年生開花植物,是臺灣主要出口、外銷之花卉,在臺灣花卉產業之經濟產值佔有一席之地。姬蝴蝶蘭 (P. equestris) 為臺灣原生種蘭花,於2015年已完成全基因體解序。然而目前仍未有已發表之蝴蝶蘭遺傳圖譜。因此,本研究目的為建構蝴蝶蘭之遺傳圖譜。P. aphrodite subsp. formosana及 P. equestris為台灣唯二的原生種,也是蝴蝶蘭育種之重要親本。利用此二原生種雜交產生之118株第一子代,作為此遺傳圖譜之定位族群。本系吳文鑾教授長期專注於開發簡單重複序列 (simple sequence repeat, SSR) 分子標誌,包含利用表現序列標籤(expressed sequence tags, ESTs),454定序DNA序列,bacterial artificial chromosome (BAC)-end sequences (BESs) 等共發展蝴蝶蘭5,483 SSRs,且其中603 SSRs已設計引子序列。本研究利用其中333 SSRs於父母本間進行多型性 (polymorphism) 之篩選,其中241 (72.37%) SSRs可成功於6% polyacrylamide gel electrophoresis (PAGE)分析產生增幅條帶,而162 (48.65%) SSRs於父母本間顯示出多型性。此外,先前實驗室以genotyping-by-sequencing (GBS) 技術發展了2,768單一核苷酸多型性分子標誌(single nucleotide polymorphisms, SNPs)。以卡方適合度檢定 (chi-square test) 篩選SSRs及SNPs分子標誌,其中108 SSRs和1,798 SNPs共1,906分子標誌可被應用於此遺傳圖譜之建立。利用OneMap軟體進行連鎖分析 (linkage analysis),最終總共1,214分子標誌成功定位於27連鎖群 (linkage groups, LGs) 構成之連鎖遺傳圖譜。此圖譜總長約15,192 centimorgan (cM),每個分子標誌間平均距離為12.51 cM。和P. equestris scaffold序列以及BESs 比對後,將27 LGs 分群成可能之19 homologous groups (HGs)。本遺傳圖譜提供未來進行數量性狀基因座 (quantitative trait loci, QTL) 定位以及進一步分子輔助育種 (marker-assisted selection, MAS) 之基礎。

    Phalaenopsis orchids (2N=38) are perennial flowering plants, hold a significant economic value in Taiwan agricultural industry, and are the major export of ornamental crops in Taiwan. Whole genome sequencing of P. equestris, a native species in Taiwan, has been completed in 2015. However, the genetic linkage map for Phalaenopsis is still unavailable. The aim of this thesis is to construct a genetic linkage map for Phalaenopsis. Both P. aphrodite and P. equestris are the only two native Phalaenopsis orchids in Taiwan. For constructing the genetic map, a F1 population consisting of 118 progenies from a cross between P. aphrodite and P. equestris was used. Dr. Wen-Luan Wu has being for long focused on developing simple sequence repeat (SSR) of Phalaenopsis orchids. Her group had developed 5,483 SSRs from expressed sequence tags (ESTs), 454 sequenced genomic DNA and bacterial artificial chromosome (BAC)-end sequences (BESs). Among them, 603 SSRs have primer sequences designed. In this study, 333 SSRs with primer sequences were used. 241 (72.37%) SSRs can be successfully amplified, and 162 (48.65%) SSRs revealed polymorphism between two parents by using a 6% polyacrylamide gel electrophoresis (PAGE). In addition, 2,768 single nucleotide polymorphism (SNP) markers have been previously developed by using genotyping-by-sequencing (GBS) analysis in our lab. SSR and SNP markers were filtered through chi-square test and eventually 108 SSRs and 1,798 SNPs, total 1,906 markers were applied for linkage analysis. The genetic linkage map was constructed by OneMap software, a package from R software. It is comprised of 27 linkage groups (LGs) with total 1,214 mapped markers. The total length of 27 LGs is 15,192 centimorgan (cM), and the average marker density is 12.51 cM. The 27 LGs then were assembled into potential 19 homologous groups (HGs) according to scaffold sequences that have already paralleled with BESs. The genetic linkage map of Phalaenopsis will facilitate the access of genes that correspond to the interested traits and quantitative trait loci (QTL), incorporate with marker-assisted breeding, and enhance genome assembly of P. equestris.

    中文摘要-------------------------------------------------------------------------------------------- i Abstract------------------------------------------------------------------------------------------- ii 誌謝----------------------------------------------------------------------------------------------- iii Contents-------------------------------------------------------------------------------------------- iv List of Tables-------------------------------------------------------------------------------------- vi List of Figures--------------------------------------------------------------------------------------vii Abbreviation----------------------------------------------------------------------------------------viii 1. Introduction------------------------------------------------------------------------------------- 1 Phalaenopsis orchids---------------------------------------------------------------- 1 1.1.1. The economic significance of Phalaenopsis in Taiwan ------------------------ 1 1.1.2. Difficulties in Phalaenopsis breeding -------------------------------------------- 1 1.1.3. Phalaenopsis genomics ------------------------------------------------------------- 2 Genome mapping -------------------------------------------------------------------- 2 1.2.1. Quantitative trait loci (QTL) ------------------------------------------------------- 3 1.2.2. Physical mapping -------------------------------------------------------------------- 3 1.2.3. Optical mapping---------------------------------------------------------------------- 3 1.2.4. Cytogenetic mapping---------------------------------------------------------------- 4 1.2.5. Genetic mapping --------------------------------------------------------------------- 4 1.2.5.1. Linkage analysis --------------------------------------------------------- 4 1.2.5.2. Molecular markers------------------------------------------------------- 5 1.2.5.2.1. Phalaenopsis simple sequence repeats (SSRs) markers --- 5 1.2.5.2.2. SNP markers from genotyping-by sequencing (GBS) ----- 5 Genetic mapping in Phalaenopsis ------------------------------------------------- 6 2. Aim------------------------------------------------------------------------------------------------- 7 3. Materials and methods --------------------------------------------------------------------------- 8 v Mapping population ----------------------------------------------------------------- 8 DNA extraction and quantification------------------------------------------------ 8 SSR source---------------------------------------------------------------------------- 8 Amplification and identification of polymorphic SSR between two parents 9 GBS SNP markers ------------------------------------------------------------------- 9 Marker genotyping and linkage map construction -----------------------------10 4. Results---------------------------------------------------------------------------------------------12 Identification of polymorphic SSR markers between two parents-----------12 SSR and SNP marker genotyping ------------------------------------------------12 Linkage map construction ---------------------------------------------------------13 5. Discussion ----------------------------------------------------------------------------------------15 Mapping success rate and appropriate mapping population ------------------15 5.1.1. Genetic divergence between two parents, P. aphrodite and P. equestris ---15 5.1.2. Outcrossing Phalaenopsis F1 population ----------------------------------------15 5.1.3. Population size ----------------------------------------------------------------------16 Marker segregation distortion-----------------------------------------------------16 Consensus linkage map for Phalaenopsis ---------------------------------------17 6. Conclusion and perspectives-------------------------------------------------------------------19 References----------------------------------------------------------------------------------------------20 Appendix -----------------------------------------------------------------------------------------------56

    Acquaah, G. (2012) Mapping of Genes. In Principles of Plant Genetics and Breeding John Wiley & Sons, Ltd, pp. 402-423.
    Alheit, K. V., Reif, J. C., Maurer, H. P., Hahn, V., Weissmann, E. A., Miedaner, T. and Würschum, T. (2011) Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics, 12, 380.
    Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A. and Johnson, E. A. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS one, 3, e3376.
    Balsalobre, T. W. A., da Silva Pereira, G., Margarido, G. R. A., Gazaffi, R., Barreto, F. Z., Anoni, C. O., Cardoso-Silva, C. B., Costa, E. A., Mancini, M. C., Hoffmann, H. P., de Souza, A. P., Garcia, A. A. F. and Carneiro, M. S. (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics, 18, 72.
    Bartholome, J., Mandrou, E., Mabiala, A., Jenkins, J., Nabihoudine, I., Klopp, C., Schmutz, J., Plomion, C. and Gion, J. M. (2015) High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. New Phytol, 206, 1283-1296.
    Baxter, S. W., Davey, J. W., Johnston, J. S., Shelton, A. M., Heckel, D. G., Jiggins, C. D. and Blaxter, M. L. (2011) Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PloS one, 6, e19315.
    Brown, G. R., Bassoni, D. L., Gill, G. P., Fontana, J. R., Wheeler, N. C., Megraw, R. A., Davis, M. F., Sewell, M. M., Tuskan, G. A. and Neale, D. B. (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics, 164.
    Bushakra, J. M., Bryant, D. W., Dossett, M., Vining, K. J., VanBuren, R., Gilmore, B. S., Lee, J., Mockler, T. C., Finn, C. E. and Bassil, N. V. (2015a) A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag(4) conferring resistance to the aphid Amphorophora agathonica. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 128, 1631-1646.
    Bushakra, J. M., Lewers, K. S., Staton, M. E., Zhebentyayeva, T. and Saski, C. A. (2015b) Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.). BMC Plant Biology, 15, 258.
    Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W.-C., Liu, K.-W., Chen, L.-J., He, Y., Xu, Q., Bian, C., Zheng, Z., Sun, F., Liu, W., Hsiao, Y.-Y., Pan, Z.-J., Hsu, C.-C., Yang, Y.-P., Hsu, Y.-C., Chuang, Y.-C., Dievart, A., Dufayard, J.-F., Xu, X., Wang, J.-Y., Wang, J., Xiao, X.-J., Zhao, X.-M., Du, R., Zhang, G.-Q., Wang, M., Su, Y.-Y., Xie, G.-C., Liu, G.-H., Li, L.-Q., Huang, L.-Q., Luo, Y.-B., Chen, H.-H., Van de Peer, Y. and Liu, Z.-J. (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet, 47, 65-72.
    Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B. and Pang, E. C. K. (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169-196.
    Eckardt, N. A. (2000) Sequencing the Rice Genome. The Plant Cell, 12, 2011-2018.
    Faris, J. D., Laddomada, B. and Gill, B. S. (1998) Molecular Mapping of Segregation Distortion Loci in <em>Aegilops tauschii</em>. Genetics, 149, 319.
    Feng, S., Zhao, H., Lu, J., Liu, J., Shen, B. and Wang, H. (2013) Preliminary genetic linkage maps of Chinese herb Dendrobium nobile and D. moniliforme. Journal of genetics, 92, 205-212.
    Fu, C.-H., Chen, Y.-W., Hsiao, Y.-Y., Pan, Z.-J., Liu, Z.-J., Huang, Y.-M., Tsai, W.-C. and Chen, H.-H. (2011) OrchidBase: A Collection of Sequences of the Transcriptome Derived from Orchids. Vol. Vol. 52 Oxford University Press, pp. 238-243.
    Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q. and Buckler, E. S. (2014) TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PloS one, 9, e90346.
    Hsu, C. C., Chung, Y. L., Chen, T. C., Lee, Y. L., Kuo, Y. T., Tsai, W. C., Hsiao, Y. Y., Chen, Y. W., Wu, W. L. and Chen, H. H. (2011) An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol, 11, 3.
    Hudson, C. J., Kullan, A. R. K., Freeman, J. S., Faria, D., Grattapaglia, D., Kilian, A., Myburg, A., Potts, B. M. and Vaillancourt, R. E. (2012) High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping. Tree Genetics & Genomes, 8.
    Kuhn, D. N., Bally, I. S. E., Dillon, N. L., Innes, D., Groh, A. M., Rahaman, J., Ophir, R., Cohen, Y. and Sherman, A. (2017) Genetic Map of Mango: A Tool for Mango Breeding. Front Plant Sci, 8, 577.
    Kuo, Y. T. (2009) Development and application of gene-linked microsatellite markers in Phalaenopsis orchids. In Institute of Life Sciences, Vol. Master National Cheng Kung University, Tainan, Taiwan.
    Kurata, N., Nagamura, Y., Yamamoto, K., Harushima, Y., Sue, N., Wu, J., Antonio, B. A., Shomura, A., Shimizu, T., Lin, S. Y., Inoue, T., Fukuda, A., Shimano, T., Kuboki, Y., Toyama, T., Miyamoto, Y., Kirihara, T., Hayasaka, K., Miyao, A., Monna, L., Zhong, H. S., Tamura, Y., Wang, Z. X., Momma, T., Umehara, Y., Yano, M., Sasaki, T. and Minobe, Y. (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet, 8, 365-372.
    Lee, Y. L. (2011) Development of genome-wide microsatellite markers and their applications for genotyping in Phalaenopsis orchids. In Institute of Life Sciences, Vol. Master National Cheng Kung University, Tainan, Taiwan.
    Li, B., Tian, L., Zhang, J., Huang, L., Han, F., Yan, S., Wang, L., Zheng, H. and Sun, J. (2014) Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics, 15, 1086.
    Li, C., Bai, G., Chao, S. and Wang, Z. (2015) A High-Density SNP and SSR Consensus Map Reveals Segregation Distortion Regions in Wheat. Biomed Res Int, 2015, 830618.
    Lu, J.-J., Zhao, H.-Y., Suo, N.-N., Wang, S., Shen, B., Wang, H.-Z. and Liu, J.-J. (2012a) Genetic linkage maps of Dendrobium moniliforme and D. officinale based on EST-SSR, SRAP, ISSR and RAPD markers. Scientia Horticulturae, 137, 1-10.
    Lu, J. J., Wang, S., Zhao, H. Y., Liu, J. J. and Wang, H. Z. (2012b) Genetic linkage map of EST-SSR and SRAP markers in the endangered Chinese endemic herb Dendrobium (Orchidaceae). Genetics and molecular research : GMR, 11, 4654-4667.
    Maliepaard, C., Jansen, J. and Van Ooijen, J. W. (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genetical Research, 70, 237-250.
    Margarido, G. R. A., Souza, A. P. and Garcia, A. A. F. (2007) OneMap: software for genetic mapping in outcrossing species. Hereditas, 144, 78-79.
    Marubodee, R., Ogiso-Tanaka, E., Isemura, T., Chankaew, S., Kaga, A., Naito, K., Ehara, H. and Tomooka, N. (2015) Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich. PloS one, 10, e0138942.
    Neely, R. K., Deen, J. and Hofkens, J. (2011) Optical mapping of DNA: Single‐molecule‐based methods for mapping genomes. Biopolymers, 95, 298-311.
    Reflinur, Kim, B., Jang, S. M., Chu, S.-H., Bordiya, Y., Akter, M. B., Lee, J., Chin, J. H. and Koh, H.-J. (2014) Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice, 7, 3.
    Shepherd, M., Kasem, S., Lee, D. and Henry, R. (2006) Construction of microsatellite linkage maps for Corymbia. Silvae Genetica, 55.
    Tsai, C. C., Huang, S. C., Huang, P. L., Chen, F. Y., Su, Y. T. and Chou, C. H. (2006) Molecular evidence for the natural hybrid origin of Phalaenopsis × intermedia Lindl. The Journal of Horticultural Science and Biotechnology, 81, 691-699.
    Tsai, C. C., Huang, S. C., Huang, P. L. and Chou, C. H. (2003) Phylogeny of the genus Phalaenopsis (Orchidaceae) with emphasis on the subgenus Phalaenopsis based on the sequences of the internal transcribed spacers 1 and 2 of rDNA. The Journal of Horticultural Science and Biotechnology, 78, 879-887.
    Tsai, C. C., Shih, H. C., Wang, H. V., Lin, Y. S., Chang, C. H., Chiang, Y. C. and Chou, C. H. (2015) RNA-Seq SSRs of Moth Orchid and Screening for Molecular Markers across Genus Phalaenopsis (Orchidaceae). PloS one, 10, e0141761.
    Tsai, W.-C., Fu, C.-H., Hsiao, Y.-Y., Huang, Y.-M., Chen, L.-J., Wang, M., Liu, Z.-J. and Chen, H.-H. (2013) OrchidBase 2.0: Comprehensive Collection of Orchidaceae Floral Transcriptomes. Vol. Vol. 54 Oxford University Press, pp. E-7.
    Varshney, R. K., Graner, A. and Sorrells, M. E. (2005) Genic microsatellite markers in plants: features and applications. Trends in biotechnology, 23, 48-55.
    Voorrips, R. E. (2002) MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93, 77-78.
    Wang, C., Zhu, C., Zhai, H. and Wan, J. (2005) Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genetical Research, 86, 97-106.
    Wei, Q., Wang, Y., Qin, X., Zhang, Y., Zhang, Z., Wang, J., Li, J., Lou, Q. and Chen, J. (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics, 15, 1158.
    Wu, J., Li, L. T., Li, M., Khan, M. A., Li, X. G., Chen, H., Yin, H. and Zhang, S. L. (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. Journal of experimental botany, 65, 5771-5781.
    Wu, R., Ma, C. X., Painter, I. and Zeng, Z. B. (2002) Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Theor Popul Biol, 61, 349-363.
    Xu, S. (2008) Quantitative Trait Locus Mapping Can Benefit From Segregation Distortion. Genetics, 180, 2201-2208.
    Xu, Y., Zhu, L., Xiao, J., Huang, N. and McCouch, S. R. (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2 , backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Molecular and General Genetics MGG, 253, 535-545.
    Xue, D., Feng, S., Zhao, H., Jiang, H., Shen, B., Shi, N., Lu, J., Liu, J. and Wang, H. (2010) The linkage maps of Dendrobium species based on RAPD and SRAP markers. Journal of Genetics and Genomics, 37, 197-204.
    Yin, T. M., DiFazio, S. P., Gunter, L. E., Riemenschneider, D. and Tuskan, G. A. (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theoretical and Applied Genetics, 109, 451-463.
    Zamir, D. and Tadmor, Y. (1986) Unequal Segregation of Nuclear Genes in Plants. Botanical Gazette, 147, 355-358.
    Zhao, Y., Su, K., Wang, G., Zhang, L., Zhang, J., Li, J. and Guo, Y. (2017) High-Density Genetic Linkage Map Construction and Quantitative Trait Locus Mapping for Hawthorn (Crataegus pinnatifida Bunge). Scientific Reports, 7, 5492.
    Zhou, W., Tang, Z., Hou, J., Hu, N. and Yin, T. (2015) Genetic Map Construction and Detection of Genetic Loci Underlying Segregation Distortion in an Intraspecific Cross of Populus deltoides. PloS one, 10, e0126077.

    下載圖示 校內:2022-08-30公開
    校外:2022-08-30公開
    QR CODE