| 研究生: |
吳志偉 Wu, Chih-wei |
|---|---|
| 論文名稱: |
跑步機運動在C57BL/6小鼠受到外在與內生性刺激下對海馬迴神經新生的影響 Effects of treadmill running on adult hippocampal neurogenesis under exogenous and endogenous insults in C57BL/6 mice |
| 指導教授: |
郭余民
Kuo, Yu-min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 神經新生 、跑步機運動 |
| 外文關鍵詞: | treadmill running, neurogenesis |
| 相關次數: | 點閱:155 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海馬迴內齒狀迴 (hippocampal dentate gyrus) 的顆粒下層 (subgranular zone) 具有終生持續神經細胞新生的現象,此一現象被認為與海馬迴所參與的學習與記憶的功能有關。成年動物海馬迴內神經新生會受到許多因子所調控,其中運動已知可增加海馬迴之神經新生與其功能;而發炎與老化則會降低海馬迴之神經新生及功能。本論文的主要研究目的是探討強制性跑步運動是否會影響中樞神經發炎及老化所抑制海馬迴的神經新生。首先以年輕成年小鼠腹腔重複注射脂多醣作為周邊誘發中樞發炎的模式,來探討跑步運動對發炎抑制海馬迴神經新生的影響。實驗結果發現,腹腔重複注射脂多醣會減少海馬迴內腦神經滋養因子,及未成熟新生神經細胞的數目,但並不會改變分裂細胞的總數。五週跑步運動則會增加海馬迴腦神經滋養因子及其接受體-酪氨酸激受體蛋白質的表現、促進神經幹細胞分裂、以及增加未成熟神經細胞的數目。有趣的是,跑步運動可以補償腹腔重複注射脂多醣所抑制的神經新生的數目,與海馬迴腦神經滋養因子表現量減少的現象及增加酪氨酸激受體的表現。然而,跑步運動卻無法改善腹腔注射脂多醣所降低小鼠在水迷宮記憶的表現。實驗結果亦發現跑步運動並未改變脂多醣所引發的中樞發炎[如:膠細胞的活化、腫瘤壞死因子 (tumor necrosis factor-alpha) 及介白素-1(Interleukin-1 beta)的濃度]。接著,以探討跑步運動是否會改善老化所抑制海馬迴的神經新生。首先分析不同年齡(3、7、9、13及24個月)小鼠海馬迴神經新生的情形。結果顯示在中年之前神經前趨細胞分裂的數目、未成熟神經細胞及新生神經細胞的數目隨年紀增加而減少,而中年之後到老年之間新生的神經數目少且無顯著性改變。在中年前期及中年期給予五週的跑步運動會增加神經前趨細胞分裂的數目及增加未成熟神細胞的數目。此外,五週的跑步運動會促進中年小鼠海馬迴內未成熟神經細胞樹突的成熟,與增加新生神經細胞的存活。跑步運動所造成的神經新生與滋養效果並非來自降低隨年齡而增加的血清中皮質酮的基礎濃度。然而,海馬迴內隨著年紀增加而逐漸減少的腦神經滋養因子及其接受器的表現量,會因五週跑步運動而顯著增加。總合以上實驗,不論在年輕或中年的小鼠,五週的跑步運動可增加神經神生及新生神經細胞存活。此外,五週的跑步運動改善脂多醣所干擾的神經新生。跑步運動的益處不是降低發炎反應或血清中皮質酮的基礎濃度,但可能藉由增加腦神經滋養因子及其受體表現。本研究推測跑步運動改變腦中化學物質使得腦部環境適合神經幹細胞增生及神經前趨細胞成熟及存活。
New neurons are continuously generated in the subgranular zone of adult dentate gyrus (DG) throughout life. The amount of neurogenesis has been correlated with the hippocampus-dependent functions. Several stimuli are known to modulate the process of adult neurogenesis. Among them, physical exercise has advantageous effects on neurogenesis and brain function, while inflammation and aging show the opposite. The aim of this study is to investigate the effect of mandatory treadmill running (TR) on adult hippocampal neurogenesis under the challenges of exogenous immunogen-induced neuroinflammation and endogenous aging. In order to study the effects of TR on chronic neuroinflammation-affected adult hippocampal neurogenesis, mice that received repetitive intraperitoneal lipopolysaccharride (LPS) injections were forced to TR. The results showed that peripheral LPS treatments obstructed neuronal differentiation, but not proliferation. Five weeks of TR facilitated both the proliferation of the neural stem cells and their differentiation into neurons. Importantly, five weeks of TR successfully counteracted the peripheral LPS-impaired neurogenesis in the dentate area. However, five weeks of TR did not offset the LPS-disturbed performance in water maze test. The advantageous effects of TR were not due to the alteration of inflammatory responses, as glial activation and levels of up-regulated tumor necrosis factor-alpha and interleukin-1 beta were unaltered. Interestingly, TR replenished the LPS-reduced levels of brain-derived neurotrophic factor (BDNF) and its receptor, tropmyosin-related kinase B (TrkB),which is known to promote neuronal differentiation and survival. These findings suggested that TR effectively ameliorates the LPS-disturbed hippocampal neurogenesis. To investigate the effects of TR on aging-reduced hippocampal neurogenesis and the survival of newborn neurons, mice of different ages (3, 7, 9, 13, 24 months old) were studied. Compared to 3-month-old mice, the numbers of newborn neurons decreased dramatically by middle age and remained at low levels after middle age. Five weeks of TR not only increased the numbers of neural stem cell and immature neurons, but also promoted the maturation and survival of immature neurons in middle-aged mice. The neurogenic and neurotrophic effects of TR were not due to the reduction of the age-related elevation of serum corticosterone, as the basal levels of serum corticosterone were not affected by five weeks of TR. Significantly, TR elevated the age-dependent declines of BDNF and TrkB in middle-aged mice. Taken together, five weeks of TR enhanced neurogenesis and survival of newborn neurons in dentate area of young and middle-aged animals. Furthermore, five weeks of TR ameliorated the LPS-disturbed hippocampal neurogenesis. The advantageous effects of TR were not due to the alternation of inflammatory response or basal serum corticosterone, but possibly by enhancing the BDNF/TrkB signal pathway. These results suggest that TR alters the brain chemistries toward an environment that is favorable to neural stem cells proliferation and maturation and survival of neuronal progenitor cells.
1. Adlard, P.A., Perreau, V.M., and Cotman, C.W. (2005). The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol Aging 26, 511-520.
2. Ahmed, S., Reynolds, B.A., and Weiss, S. (1995). BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci 15, 5765-5778.
3. Allen, E. (1912). The cessation of mitosis in the central nervous system of albion rat. J Comp Neurol 22, 547-568.
4. Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science 135, 1127-1128.
5. Altman, J. (1969a). Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136, 269-293.
6. Altman, J. (1969b). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137, 433-457.
7. Altman, J., and Das, G.D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124, 319-335.
8. Altman, J., and Das, G.D. (1966). Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126, 337-389.
9. Altman, J., and Das, G.D. (1967). Postnatal neurogenesis in the guinea-pig. Nature 214, 1098-1101.
10. Amrein, I., Slomianka, L., Poletaeva, II, Bologova, N.V., and Lipp, H.P. (2004). Marked species and age-dependent differences in cell proliferation and neurogenesis in the hippocampus of wild-living rodents. Hippocampus 14, 1000-1010.
11. Anderson, M.F., Aberg, M.A., Nilsson, M., and Eriksson, P.S. (2002). Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 134, 115-122.
12. Arai, K., Matsuki, N., Ikegaya, Y., and Nishiyama, N. (2001). Deterioration of spatial learning performances in lipopolysaccharide-treated mice. Jpn J Pharmacol 87, 195-201.
13. Banasr, M., Hery, M., Printemps, R., and Daszuta, A. (2004). Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29, 450-460.
14. Barde, Y.A., Edgar, D., and Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J 1, 549-553.
15. Basu, A., Lazovic, J., Krady, J.K., Mauger, D.T., Rothstein, R.P., Smith, M.B., and Levison, S.W. (2005). Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J Cereb Blood Flow Metab 25, 17-29.
16. Binder, D.K. (2004). The role of BDNF in epilepsy and other diseases of the mature nervous system. Adv Exp Med Biol 548, 34-56.
17. Breunig, J.J., Silbereis, J., Vaccarino, F.M., Sestan, N., and Rakic, P. (2007). Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci U S A 104, 20558-20563.
18. Brown, J.P., Couillard-Despres, S., Cooper-Kuhn, C.M., Winkler, J., Aigner, L., and Kuhn, H.G. (2003). Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467, 1-10.
19. Buckwalter, M.S., Yamane, M., Coleman, B.S., Ormerod, B.K., Chin, J.T., Palmer, T., and Wyss-Coray, T. (2006). Chronically increased transforming growth factor-beta1 strongly inhibits hippocampal neurogenesis in aged mice. Am J Pathol 169, 154-164.
20. Cacci, E., Claasen, J.H., and Kokaia, Z. (2005). Microglia-derived tumor necrosis factor-alpha exaggerates death of newborn hippocampal progenitor cells in vitro. J Neurosci Res 80, 789-797.
21. Cameron, H.A., and Gould, E. (1994). Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61, 203-209.
22. Cameron, H.A., and McKay, R.D. (1999). Restoring production of hippocampal neurons in old age. Nat Neurosci 2, 894-897.
23. Carro, E., Trejo, J.L., Busiguina, S., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21, 5678-5684.
24. Chakravarty, S., and Herkenham, M. (2005). Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25, 1788-1796.
25. Cotman, C.W., and Berchtold, N.C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25, 295-301.
26. Couillard-Despres, S., Winner, B., Schaubeck, S., Aigner, R., Vroemen, M., Weidner, N., Bogdahn, U., Winkler, J., Kuhn, H.G., and Aigner, L. (2005). Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21, 1-14.
27. Dickstein, D.L., Kabaso, D., Rocher, A.B., Luebke, J.I., Wearne, S.L., and Hof, P.R. (2007). Changes in the structural complexity of the aged brain. Aging Cell 6, 275-284.
28. Duman, R.S. (2005). Neurotrophic factors and regulation of mood: role of exercise, diet and metabolism. Neurobiol Aging 26 Suppl 1, 88-93.
29. During, M.J., and Cao, L. (2006). VEGF, a mediator of the effect of experience on hippocampal neurogenesis. Curr Alzheimer Res 3, 29-33.
30. Ekdahl, C.T., Claasen, J.H., Bonde, S., Kokaia, Z., and Lindvall, O. (2003). Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100, 13632-13637.
31. Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat Med 4, 1313-1317.
32. Erridge, C., Bennett-Guerrero, E., and Poxton, I.R. (2002). Structure and function of lipopolysaccharides. Microbes Infect 4, 837-851.
33. Faigle, R., Brederlau, A., Elmi, M., Arvidsson, Y., Hamazaki, T.S., Uramoto, H., and Funa, K. (2004). ASK1 inhibits astroglial development via p38 mitogen-activated protein kinase and promotes neuronal differentiation in adult hippocampus-derived progenitor cells. Mol Cell Biol 24, 280-293.
34. Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F.H., and Christie, B.R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71-79.
35. Ferrer, I., Marin, C., Rey, M.J., Ribalta, T., Goutan, E., Blanco, R., Tolosa, E., and Marti, E. (1999). BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58, 729-739.
36. Frielingsdorf, H., Simpson, D.R., Thal, L.J., and Pizzo, D.P. (2007). Nerve growth factor promotes survival of new neurons in the adult hippocampus. Neurobiol Dis 26, 47-55.
37. Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433-1438.
38. Gage, F.H. (2002). Neurogenesis in the adult brain. J Neurosci 22, 612-613.
39. Galea, L.A., Spritzer, M.D., Barker, J.M., and Pawluski, J.L. (2006). Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus 16, 225-232.
40. Gao, X., Arlotta, P., Macklis, J.D., and Chen, J. (2007). Conditional knock-out of beta-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci 27, 14317-14325.
41. Godbout, J.P., Chen, J., Abraham, J., Richwine, A.F., Berg, B.M., Kelley, K.W., and Johnson, R.W. (2005). Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. Faseb J 19, 1329-1331.
42. Goldman, S.A., Kirschenbaum, B., Harrison-Restelli, C., and Thaler, H.T. (1997). Neuronal precursors of the adult rat subependymal zone persist into senescence, with no decline in spatial extent or response to BDNF. J Neurobiol 32, 554-566.
43. Gomez-Pinilla, F., Dao, L., and So, V. (1997). Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res 764, 1-8.
44. Gould, E., Cameron, H.A., Daniels, D.C., Woolley, C.S., and McEwen, B.S. (1992). Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 12, 3642-3650.
45. Gould, E., Reeves, A.J., Graziano, M.S., and Gross, C.G. (1999a). Neurogenesis in the neocortex of adult primates. Science 286, 548-552.
46. Gould, E., Tanapat, P., Hastings, N.B., and Shors, T.J. (1999b). Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3, 186-192.
47. Gould, E., Woolley, C.S., and McEwen, B.S. (1990). Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37, 367-375.
48. Gratzner, H.G. (1982). Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 218, 474-475.
49. Gross, C.G. (2000). Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1, 67-73.
50. Guan, Z., and Fang, J. (2006). Peripheral immune activation by lipopolysaccharide decreases neurotrophins in the cortex and hippocampus in rats. Brain Behav Immun 20, 64-71.
51. Hamilton, A. (1901). The division of differentiated cells in the central nervous system of the white rat. J Comp Neurol 11, 297-320.
52. Hattiangady, B., Rao, M.S., Shetty, G.A., and Shetty, A.K. (2005). Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 195, 353-371.
53. Hattiangady, B., and Shetty, A.K. (2008). Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 29, 129-147.
54. Heine, V.M., Maslam, S., Joels, M., and Lucassen, P.J. (2004). Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging 25, 361-375.
55. Hennigan, A., O'Callaghan, R.M., and Kelly, A.M. (2007). Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 35, 424-427.
56. Hu, G., Sarti, C., Jousilahti, P., Silventoinen, K., Barengo, N.C., and Tuomilehto, J. (2005). Leisure time, occupational, and commuting physical activity and the risk of stroke. Stroke 36, 1994-1999.
57. Huang, A.M., Jen, C.J., Chen, H.F., Yu, L., Kuo, Y.M., and Chen, H.I. (2006). Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm 113, 803-811.
58. Iosif, R.E., Ekdahl, C.T., Ahlenius, H., Pronk, C.J., Bonde, S., Kokaia, Z., Jacobsen, S.E., and Lindvall, O. (2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26, 9703-9712.
59. Jacobs, S., Lie, D.C., DeCicco, K.L., Shi, Y., DeLuca, L.M., Gage, F.H., and Evans, R.M. (2006). Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci U S A 103, 3902-3907.
60. Jin, K., Minami, M., Lan, J.Q., Mao, X.O., Batteur, S., Simon, R.P., and Greenberg, D.A. (2001). Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98, 4710-4715.
61. Jin, K., Sun, Y., Xie, L., Batteur, S., Mao, X.O., Smelick, C., Logvinova, A., and Greenberg, D.A. (2003). Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2, 175-183.
62. Kaneko, N., Kudo, K., Mabuchi, T., Takemoto, K., Fujimaki, K., Wati, H., Iguchi, H., Tezuka, H., and Kanba, S. (2006). Suppression of Cell Proliferation by Interferon-Alpha through Interleukin-1 Production in Adult Rat Dentate Gyrus. Neuropsychopharmacology.
63. Kaplan, M.S. (1981). Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol 195, 323-338.
64. Kaplan, M.S., and Bell, D.H. (1984). Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci 4, 1429-1441.
65. Kaplan, M.S., and Hinds, J.W. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092-1094.
66. Karten, Y.J., Olariu, A., and Cameron, H.A. (2005). Stress in early life inhibits neurogenesis in adulthood. Trends Neurosci 28, 171-172.
67. Ke, Z.J., Bowen, W.M., and Gibson, G.E. (2006). Peripheral inflammatory mechanisms modulate microglial activation in response to mild impairment of oxidative metabolism. Neurochem Int 49, 548-556.
68. Kee, N., Teixeira, C.M., Wang, A.H., and Frankland, P.W. (2007). Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nature neuroscience 10, 355-362.
69. Kempermann, G. (2002). Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 22, 635-638.
70. Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493-495.
71. Kempermann, G., Wiskott, L., and Gage, F.H. (2004). Functional significance of adult neurogenesis. Curr Opin Neurobiol 14, 186-191.
72. Kirschenbaum, B., and Goldman, S.A. (1995). Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl Acad Sci U S A 92, 210-214.
73. Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, C., Ehninger, D., and Kempermann, G. (2006). Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27, 1505-1513.
74. Kronenberg, G., Reuter, K., Steiner, B., Brandt, M.D., Jessberger, S., Yamaguchi, M., and Kempermann, G. (2003). Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. The Journal of comparative neurology 467, 455-463.
75. Kuhn, H.G., Dickinson-Anson, H., and Gage, F.H. (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16, 2027-2033.
76. Lapchak, P.A., Araujo, D.M., and Hefti, F. (1993). Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience 53, 297-301.
77. Laplagne, D.A., Kamienkowski, J.E., Esposito, M.S., Piatti, V.C., Zhao, C., Gage, F.H., and Schinder, A.F. (2007). Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. The European journal of neuroscience 25, 2973-2981.
78. Leuner, B., Kozorovitskiy, Y., Gross, C.G., and Gould, E. (2007). Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci U S A 104, 17169-17173.
79. Lichtenwalner, R.J., Forbes, M.E., Bennett, S.A., Lynch, C.D., Sonntag, W.E., and Riddle, D.R. (2001). Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107, 603-613.
80. Lie, D.C., Colamarino, S.A., Song, H.J., Desire, L., Mira, H., Consiglio, A., Lein, E.S., Jessberger, S., Lansford, H., Dearie, A.R., and Gage, F.H. (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370-1375.
81. Lledo, P.M., Alonso, M., and Grubb, M.S. (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nature reviews 7, 179-193.
82. Llorens-Martin, M., Torres-Aleman, I., and Trejo, J.L. (2006). Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons. Hippocampus 16, 480-490.
83. Lowenstein, D.H., and Arsenault, L. (1996). The effects of growth factors on the survival and differentiation of cultured dentate gyrus neurons. J Neurosci 16, 1759-1769.
84. Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learn Mem 10, 86-98.
85. Madsen, T.M., Kristjansen, P.E., Bolwig, T.G., and Wortwein, G. (2003). Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 119, 635-642.
86. Mattson, M.P., Maudsley, S., and Martin, B. (2004). A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev 3, 445-464.
87. Merrill, D.A., Karim, R., Darraq, M., Chiba, A.A., and Tuszynski, M.H. (2003). Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. J Comp Neurol 459, 201-207.
88. Meshi, D., Drew, M.R., Saxe, M., Ansorge, M.S., David, D., Santarelli, L., Malapani, C., Moore, H., and Hen, R. (2006). Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci 9, 729-731.
89. Ming, G.L., and Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28, 223-250.
90. Mizuno, M., Yamada, K., He, J., Nakajima, A., and Nabeshima, T. (2003). Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem 10, 108-115.
91. Mohapel, P., Leanza, G., Kokaia, M., and Lindvall, O. (2005). Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26, 939-946.
92. Monje, M.L., Toda, H., and Palmer, T.D. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760-1765.
93. Montaron, M.F., Drapeau, E., Dupret, D., Kitchener, P., Aurousseau, C., Le Moal, M., Piazza, P.V., and Abrous, D.N. (2006). Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging 27, 645-654.
94. Nacher, J., and McEwen, B.S. (2006). The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus 16, 267-270.
95. Neeper, S.A., Gomez-Pinilla, F., Choi, J., and Cotman, C. (1995). Exercise and brain neurotrophins. Nature 373, 109.
96. Parent, J.M., Yu, T.W., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S., and Lowenstein, D.H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17, 3727-3738.
97. Pinnock, S.B., Balendra, R., Chan, M., Hunt, L.T., Turner-Stokes, T., and Herbert, J. (2007). Interactions between nitric oxide and corticosterone in the regulation of progenitor cell proliferation in the dentate gyrus of the adult rat. Neuropsychopharmacology 32, 493-504.
98. Price, J., Turner, D., and Cepko, C. (1987). Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A 84, 156-160.
99. Pugh, C.R., Kumagawa, K., Fleshner, M., Watkins, L.R., Maier, S.F., and Rudy, J.W. (1998). Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behav Immun 12, 212-229.
100. Qin, L., Wu, X., Block, M.L., Liu, Y., Breese, G.R., Hong, J.S., Knapp, D.J., and Crews, F.T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453-462.
101. Rai, K.S., Hattiangady, B., and Shetty, A.K. (2007). Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur J Neurosci 26, 1765-1779.
102. Ramirez-Amaya, V., Marrone, D.F., Gage, F.H., Worley, P.F., and Barnes, C.A. (2006). Integration of new neurons into functional neural networks. J Neurosci 26, 12237-12241.
103. Ramon y Cajal S. (1913). Degeneration and Regeneration of the Nervous System (London: Oxford Univ. Press).
104. Rao, M.S., Hattiangady, B., Abdel-Rahman, A., Stanley, D.P., and Shetty, A.K. (2005). Newly born cells in the ageing dentate gyrus display normal migration, survival and neuronal fate choice but endure retarded early maturation. Eur J Neurosci 21, 464-476.
105. Rao, M.S., Hattiangady, B., and Shetty, A.K. (2006). The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus. Aging Cell 5, 545-558.
106. Rattiner, L.M., Davis, M., and Ressler, K.J. (2005). Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist 11, 323-333.
107. Ray, J., and Gage, F.H. (2006). Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Molecular and cellular neurosciences 31, 560-573.
108. Reynolds, B.A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707-1710.
109. Rhodes, J.S., van Praag, H., Jeffrey, S., Girard, I., Mitchell, G.S., Garland, T., Jr., and Gage, F.H. (2003). Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behav Neurosci 117, 1006-1016.
110. Rice, A.C., Khaldi, A., Harvey, H.B., Salman, N.J., White, F., Fillmore, H., and Bullock, M.R. (2003). Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol 183, 406-417.
111. Richards, L.J., Kilpatrick, T.J., and Bartlett, P.F. (1992). De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci U S A 89, 8591-8595.
112. Rivest, S. (2003). Molecular insights on the cerebral innate immune system. Brain Behav Immun 17, 13-19.
113. Rovio, S., Kareholt, I., Helkala, E.L., Viitanen, M., Winblad, B., Tuomilehto, J., Soininen, H., Nissinen, A., and Kivipelto, M. (2005). Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease. Lancet Neurol 4, 705-711.
114. Sahay, A., and Hen, R. (2007). Adult hippocampal neurogenesis in depression. Nat Neurosci 10, 1110-1115.
115. Sairanen, M., Lucas, G., Ernfors, P., Castren, M., and Castren, E. (2005). Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25, 1089-1094.
116. Saravia, F., Beauquis, J., Pietranera, L., and De Nicola, A.F. (2007). Neuroprotective effects of estradiol in hippocampal neurons and glia of middle age mice. Psychoneuroendocrinology 32, 480-492.
117. Scharfman, H., Goodman, J., Macleod, A., Phani, S., Antonelli, C., and Croll, S. (2005). Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192, 348-356.
118. Schefer, V., and Talan, M.I. (1996). Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp Gerontol 31, 387-392.
119. Seki, T., and Arai, Y. (1995). Age-related production of new granule cells in the adult dentate gyrus. Neuroreport 6, 2479-2482.
120. Semmler, A., Frisch, C., Debeir, T., Ramanathan, M., Okulla, T., Klockgether, T., and Heneka, M.T. (2007). Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204, 733-740.
121. Shetty, A.K., Rao, M.S., Hattiangady, B., Zaman, V., and Shetty, G.A. (2004). Hippocampal neurotrophin levels after injury: Relationship to the age of the hippocampus at the time of injury. J Neurosci Res 78, 520-532.
122. Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., and Gould, E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372-376.
123. Sidman, R.L., Miale, I.L., and Feder, N. (1959). Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1, 322-333.
124. Silhol, M., Bonnichon, V., Rage, F., and Tapia-Arancibia, L. (2005). Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience 132, 613-624.
125. Smart, I.H., and Smart, M. (1977). The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatial mice injected with [3H]thymidine on the eleventh and twelfth days post-conception. J Anat 123, 515-525.
126. Sparkman, N.L., Kohman, R.A., Garcia, A.K., and Boehm, G.W. (2005). Peripheral lipopolysaccharide administration impairs two-way active avoidance conditioning in C57BL/6J mice. Physiol Behav 85, 278-288.
127. Squinto, S.P., Stitt, T.N., Aldrich, T.H., Davis, S., Bianco, S.M., Radziejewski, C., Glass, D.J., Masiakowski, P., Furth, M.E., Valenzuela, D.M., and et al. (1991). trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 65, 885-893.
128. Srere (1969). Citrate synthase. Methods Enzyme 13, 3-5.
129. Sutoo, D., and Akiyama, K. (2003). Regulation of brain function by exercise. Neurobiol Dis 13, 1-14.
130. Tanapat, P., Hastings, N.B., Rydel, T.A., Galea, L.A., and Gould, E. (2001). Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 437, 496-504.
131. Tapia-Arancibia, L., Aliaga, E., Silhol, M., and Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev.
132. Taupin, P. (2006). Adult neural stem cells, neurogenic niches, and cellular therapy. Stem Cell Rev 2, 213-219.
133. Tozuka, Y., Fukuda, S., Namba, T., Seki, T., and Hisatsune, T. (2005). GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803-815.
134. Trejo, J.L., Carro, E., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21, 1628-1634.
135. Tyler, W.J., Alonso, M., Bramham, C.R., and Pozzo-Miller, L.D. (2002). From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9, 224-237.
136. Uda, M., Ishido, M., Kami, K., and Masuhara, M. (2006). Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Res 1104, 64-72.
137. Vallieres, L., Campbell, I.L., Gage, F.H., and Sawchenko, P.E. (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22, 486-492.
138. van Praag, H., Christie, B.R., Sejnowski, T.J., and Gage, F.H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96, 13427-13431.
139. van Praag, H., Kempermann, G., and Gage, F.H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2, 266-270.
140. van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D., and Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature 415, 1030-1034.
141. van Praag, H., Shubert, T., Zhao, C., and Gage, F.H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25, 8680-8685.
142. West, M.J., Slomianka, L., and Gundersen, H.J. (1991). Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231, 482-497.
143. Wu, C.W., Chen, Y.C., Yu, L., Chen, H.I., Jen, C.J., Huang, A.M., Tsai, H.J., Chang, Y.T., and Kuo, Y.M. (2007). Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem 103, 2471-2481.
144. Xu, B., Gottschalk, W., Chow, A., Wilson, R.I., Schnell, E., Zang, K., Wang, D., Nicoll, R.A., Lu, B., and Reichardt, L.F. (2000). The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J Neurosci 20, 6888-6897.
145. Yamada, K., and Nabeshima, T. (2003). Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91, 267-270.
146. Yang, D.S., Kumar, A., Stavrides, P., Peterson, J., Peterhoff, C.M., Pawlik, M., Levy, E., Cataldo, A.M., and Nixon, R.A. (2008). Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. Am J Pathol 173, 665-681.
147. Yehuda, R., Fairman, K.R., and Meyer, J.S. (1989). Enhanced brain cell proliferation following early adrenalectomy in rats. J Neurochem 53, 241-248.
148. Zhao, C., Teng, E.M., Summers, R.G., Jr., Ming, G.L., and Gage, F.H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26, 3-11.
149. Zocher, M., Czub, S., Schulte-Monting, J., de La Torre, J.C., and Sauder, C. (2000). Alterations in neurotrophin and neurotrophin receptor gene expression patterns in the rat central nervous system following perinatal Borna disease virus infection. J Neurovirol 6, 462-477.