研究生: |
許庭維 Hsu, Ting-Wei |
---|---|
論文名稱: |
短程有序奈米含鐵及含鈦礦物促進光催化降解有機碳及含氟汙染物的機制與應用 The mechanism and application of short range order nano-sized iron and titanium -containing minerals to promote photocatalytic degradation of organic carbon and fluoride pollutants |
指導教授: |
梁碧清
Liang, Bi-qing |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 光催化 、二氧化鈦 、水鐵礦(Ferrihydrite) 、有機汙染物降解 、全氟辛酸(Perfluorooctanoic acid,PFOA) |
外文關鍵詞: | Photocatalytic, Titanium Dioxide (TiO2), Ferrihydrite, Degradation of organic pollutants, Perfluorooctanoic acid(PFOA) |
相關次數: | 點閱:46 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳的生物地球化學循環與全球暖化及氣候變遷有密切關聯,除了化學性質的穩定程度影響其宿命,有機碳與礦物的交互作用也對它們在環境的長期穩定有密切的關係。
在過往的文獻中,我們發現天然的土壤中富有相當比例的奈米含鈦及含鐵礦物(如:二氧化鈦、鈦鐵礦、水鐵礦、赤鐵礦、針鐵礦等),這些奈米礦物可以透過改質的方式,增加其作為光觸媒的能力,提高光催化效率,現今常用於有機廢水處理。然而在過去的研究中,對於這些奈米礦物在自然界中的重要性著墨偏少。在自然界中,鐵常以二價及三價存在,在有水的環境下容易形成短程有序的礦物-水鐵礦,它雖然普遍存在,但是因其結晶度差、排列較無序,難以被傳統的X光繞射技術分析。所以我們大膽假設在過往的研究中,有關水鐵礦對碳的降解,特別是透過光催化發生的降解可能被嚴重低估。因此本研將實驗分成三個階段,測試在不同條件下混合相奈米礦物的光催化能力。
在第一階段的光催化實驗,首先以Schwertmann和Cornell在1991的方法合成水鐵礦,然後冷凍乾燥,再加入亞甲基藍,以此作為模型,模擬水鐵礦和二氧化鈦在UV光下的催化能力,實驗採用濃度20mg/L的亞甲基藍溶液,催化礦物採用水鐵礦混合不同重量比的二氧化鈦為處理。設立二氧化鈦100%為參考,測試二氧化鈦以90%、70%、50%、20%、0%混合水鐵礦為實驗組,用波長254nm的 UV光照射,每30分鐘測量一次亞甲基藍的剩餘濃度,以檢驗3小時內奈米礦物的光催化效果。
在第二階段的光催化自由基清除實驗,亞甲基藍溶液、UV光照時長以及實驗時長皆與第一階段相同,以二氧化鈦100%做為對照組,並以50%、20%作為實驗組。在本階段實驗中會分別在亞甲基藍溶液內加入para-benzoquinone (P-BQ) 、isopropanol (IPA)、 ammonium oxalate (AO) ,這三種物質可作為自由基清除劑,分別清除超氧離子(∙O2-)、氫氧自由基(·OH)及電洞。如此一來便能以此判別哪種活性氧(ROS,reactive oxygen species)對本系統在光催化下降解有機物汙染物的影響最大。
在第三階段的光催化降解含氟汙染物實驗中,本研究將亞甲基藍溶液改成10ppm PFOA溶液。PFOA是一種在河川中常見有機汙染物,因為有強C-F鍵(530 KJ/mol)而使其性質穩定不易自然降解,因此將實驗時長及UV光照時間拉長到8小時,並用HPLC-MS/MS分析在第0、2、4、8小時PFOA溶液,以此觀測本系統在UV光下對PFOA的降解情形。
綜合三個階段的實驗結果發現,純相的水鐵礦幾乎不具有光催化能力,而以不同重量百分比混合二氧化鈦和水鐵礦的奈米礦物處理會比純二氧化鈦有更好的光催化效果,並以40%~70%的二氧化鈦比例為佳,其中又以50%的二氧化鈦有最佳的光催化能力。推測是在混合相礦物中,電子在不同的能量的導帶上發生暫時的轉移,延緩了電子與電洞再結合的速度,從而產生比較多的氫氧自由基和超氧離子,使得光催化能力增強。後續的自由基清除實驗也證實了這個假設。推論在過往研究中,可能缺乏天然環境中奈米礦物對於光催化反應的著墨,並導致其降解有機汙染物的貢獻被嚴重低估。
In previous literature, we found that natural soil contains many nanoscale titanium-containing and iron-containing minerals (such as titanium dioxide, ferrihydrite, hematite, goethite, etc.).These nano-minerals can be modified to increase photocatalyst ability and improve photocatalytic efficiency. Nowadays, we often use these techniques in organic wastewater treatment. In nature, the iron ions of ferrihydrite often exist in divalent and trivalent forms. It is widely found in water environments. However, due to its poor crystallinity and disordered arrangement, it is difficult to be analyzed by traditional X-ray diffraction technology. Therefore, in past studies, the importance of ferrihydrite was less discussed. Therefore, this study divided the experiment into three stages to test the photocatalytic ability of mixed in-phase nano-minerals under different conditions. The results showed that pure phase ferrihydrite has almost no photocatalytic ability, while titanium dioxide with a weight percentage of 40% to 70% has better photocatalytic ability, with 50% performing the best. It is speculated that after the minerals are mixed, the electrons can be temporarily transferred in the conduction band of different energies, which delays the recombination speed of electrons and holes, thus producing more hydroxyl radical and superoxide ions, which enhances the photocatalytic ability. The inhibition experiments can also prove this hypothesis. The inference suggests that past research may have overlooked the role of naturally occurring nanominerals in photocatalytic reactions, leading to a significant underestimation of their contribution to the degradation of organic pollutants in the environment.
1. Alosfur, Firas & Ouda, Aseel & Ridha, Noor & Abud, Saleh. (2019). Structure and optical properties of TiO2 nanorods prepared using polyol solvothermal method. Applied Science and Technology, 2144(7) : 030025. 10.1063/1.5123095.
2. Ansari, S. A., Khan, M. M., Ansari, M. O., & Cho, M. H. (2016). Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis [10.1039/C5NJ03478G]. New Journal of Chemistry, 40(4), 3000-3009. https://doi.org/10.1039/C5NJ03478G
3. Braslavsky, S. E., Braun, A. M., Cassano, A. E., Emeline, A. V., Litter, M. I., Palmisano, L., Parmon, V. N., & Serpone, N. (2011). Glossary of terms used in photocatalysis and radiation catalysis (IUPAC recommendations 2011) Pure and Applied Chemistry, 83(4), 931-1014. https://doi.org/10.1351/PAC-REC-09-09-36
4. Buzby, S., Barakat, M. A., Lin, H., Ni, C., Rykov, S. A., Chen, J. G., & Ismat Shah, S. (2006). Visible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 24(3), 1210-1214. https://doi.org/10.1116/1.2192544
5. Cao, M. H., Wang, B. B., Yu, H. S., Wang, L. L., Yuan, S. H., & Chen, J. (2010). Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of Hazardous Materials, 179(1), 1143-1146. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.02.030
6. Chen, F., He, A., Wang, Y., Yu, W., Chen, H., Geng, F., Li, Z., Zhou, Z., Liang, Y., Fu, J., Zhao, L., & Wang, Y. (2022). Efficient photodegradation of PFOA using spherical BiOBr modified TiO2 via hole-remained oxidation mechanism. Chemosphere, 298, 134176. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134176
7. Chen, M.-J., Lo, S.-L., Lee, Y.-C., & Huang, C.-C. (2015). Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. Journal of Hazardous Materials, 288, 168-175. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.02.004
8. Chen, M.-J., Lo, S.-L., Lee, Y.-C., Kuo, J., & Wu, C.-H. (2016). Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide. Journal of Hazardous Materials, 303, 111-118. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.10.011
9. Chen, Y.-C., Lo, S.-L., & Kuo, J. (2011). Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid. Water Research, 45(14), 4131-4140. https://doi.org/https://doi.org/10.1016/j.watres.2011.05.020
10. Cho, I.-H. (2011). Degradation and reduction of acute toxicity of environmentally persistent perfluorooctanoic acid (PFOA) using VUV photolysis and TiO2 photocatalysis in acidic and basic aqueous solutions. Toxicological & Environmental Chemistry, 93(5), 925-940. https://doi.org/10.1080/02772248.2011.564173
11. Cooper, R. E., Eusterhues, K., Wegner, C. E., Totsche, K. U., & Küsel, K. (2017). Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia. Biogeosciences, 14(22), 5171-5188. https://doi.org/10.5194/bg-14-5171-2017
12. Cornell, R. M., & Udo Schwertmann. (2006). The iron oxides : structure, properties, reactions, occurrences and uses. Wiley‐VCH Verlag GmbH & Co. KGaA.
13. Dadigala, R., Gangapuram, B. R., Bandi, R., Dasari, A., & Guttena, V. (2015). Synthesis and Characterization of C–TiO2/FeTiO3 and CQD/C–TiO2/FeTiO3 Photocatalysts with Enhanced Photocatalytic Activities Under Sunlight Irradiation. Acta Metallurgica Sinica, 29(1), 17-27. https://doi.org/10.1007/s40195-015-0356-z
14. Davis, K. L., Aucoin, M. D., Larsen, B. S., Kaiser, M. A., & Hartten, A. S. (2007). Transport of ammonium perfluorooctanoate in environmental media near a fluoropolymer manufacturing facility. Chemosphere, 67(10), 2011-2019. https://doi.org/https://doi.org/10.1016/j.chemosphere.2006.11.049
15. De Oliveira, G. R., Fernandes, N. S., Melo, J. V. D., Da Silva, D. R., Urgeghe, C., & Martínez-Huitle, C. A. (2011). Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chemical Engineering Journal, 168(1), 208-214. https://doi.org/10.1016/j.cej.2010.12.070
16. Dette, C., Pérez-Osorio, M. A., Kley, C. S., Punke, P., Patrick, C. E., Jacobson, P., Giustino, F., Jung, S. J., & Kern, K. (2014). TiO2 Anatase with a Bandgap in the Visible Region. Nano Letters, 14(11), 6533-6538. https://doi.org/10.1021/nl503131s
17. Dewitt, J. C., Peden-Adams, M. M., Keller, J. M., & Germolec, D. R. (2012). Immunotoxicity of Perfluorinated Compounds: Recent Developments. Toxicologic Pathology, 40(2), 300-311. https://doi.org/10.1177/0192623311428473
18. Ding, L., Hou, Y., Liu, H., Peng, J., Cao, Z., Zhang, Y., Wang, B., Cao, X., Chang, Y., Wang, T., & Liu, G. (2023). Alcohols as Scavengers for Hydroxyl Radicals in Photocatalytic Systems: Reliable or Not? ACS ES&T Water, 3(11), 3534-3543. https://doi.org/10.1021/acsestwater.3c00271
19. Dinh, V.-P., Huynh, T.-D.-T., Le, H. M., Nguyen, V.-D., Dao, V.-A., Hung, N. Q., Tuyen, L. A., Lee, S., Yi, J., Nguyen, T. D., & Tan, L. V. (2019). Insight into the adsorption mechanisms of methylene blue and chromium(iii) from aqueous solution onto pomelo fruit peel [10.1039/C9RA04296B]. RSC Advances, 9(44), 25847-25860. https://doi.org/10.1039/C9RA04296B
20. Dutta, S., & Bhattacharjee, J. (2022). Chapter 1 - A comparative study between physicochemical and biological methods for effective removal of textile dye from wastewater. In M. P. Shah, S. Rodriguez-Couto, & R. T. Kapoor (Eds.), Development in Wastewater Treatment Research and Processes (pp. 1-21). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-85657-7.00003-1
21. Fatin, S., Lim, H., Tan, W., & Ming, H. (2012). Comparison of Photocatalytic Activity and Cyclic Voltammetry of Zinc Oxide and Titanium Dioxide Nanoparticles toward Degradation of Methylene Blue. International Journal of Electrochemical Science, 7, 9074-9084.
22. Frohna, K., & Stranks, S. D. (2019). 7 - Hybrid perovskites for device applications. In O. Ostroverkhova (Ed.), Handbook of Organic Materials for Electronic and Photonic Devices (Second Edition) (pp. 211-256). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-102284-9.00007-3
23. Galindo, C., Jacques, P., & Kalt, A. (2000). Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations. Journal of Photochemistry and Photobiology A: Chemistry, 130(1), 35-47. https://doi.org/https://doi.org/10.1016/S1010-6030(99)00199-9
24. Górska, P., Zaleska, A., Kowalska, E., Klimczuk, T., Sobczak, J. W., Skwarek, E., Janusz, W., & Hupka, J. (2008). TiO2 photoactivity in vis and UV light: The influence of calcination temperature and surface properties. Applied Catalysis B: Environmental, 84(3), 440-447. https://doi.org/https://doi.org/10.1016/j.apcatb.2008.04.028
25. Hiemstra, T. (2013). Surface and mineral structure of ferrihydrite. Geochimica et Cosmochimica Acta, 105, 316-325. https://doi.org/https://doi.org/10.1016/j.gca.2012.12.002
26. Hodes, G., & Kamat, P. V. (2015). Understanding the Implication of Carrier Diffusion Length in Photovoltaic Cells. The Journal of Physical Chemistry Letters, 6(20), 4090-4092. https://doi.org/10.1021/acs.jpclett.5b02052
27. Hori, H., Hayakawa, E., Einaga, H., Kutsuna, S., Koike, K., Ibusuki, T., Kiatagawa, H., & Arakawa, R. (2004). Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science and Technology, 38(22), 6118-6124. https://doi.org/10.1021/es049719n
28. Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S., Kiatagawa, H., & Arakawa, R. (2005). Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science and Technology, 39(7), 2383-2388. https://doi.org/10.1021/es0484754
29. Javed, H., Metz, J., Eraslan, T. C., Mathieu, J., Wang, B., Wu, G., Tsai, A.-L., Wong, M. S., & Alvarez, P. J. J. (2020). Discerning the Relevance of Superoxide in PFOA Degradation. Environmental Science & Technology Letters, 7(9), 653-658. https://doi.org/10.1021/acs.estlett.0c00505
30. Jiang, Q., Zhu, R., Zhu, Y., & Chen, Q. (2019). Efficient degradation of cefotaxime by a UV+ferrihydrite/TiO2+H2O2 process: the important role of ferrihydrite in transferring photo-generated electrons from TiO2 to H2O2. Journal of Chemical Technology & Biotechnology, 94(8), 2512-2521. https://doi.org/https://doi.org/10.1002/jctb.6041
31. Kumar, G., Singh, A., Bhati, A., Khare, P., Tripathi, K., & Sonkar, S. (2019). Soluble Graphene Nanosheets for the Sunlight-Induced Photodegradation of the Mixture of Dyes and its Environmental Assessment. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-38717-1
32. Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., & Seed, J. (2007). Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicological Sciences, 99(2), 366-394.
33. Li, X., Zhang, P., Jin, L., Shao, T., Li, Z., & Cao, J. (2012). Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environmental Science & Technology, 46(10), 5528-5534. https://doi.org/10.1021/es204279u
34. Li, Z., Zhang, P., Shao, T., Wang, J., Jin, L., & Li, X. (2013). Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA). Journal of Hazardous Materials, 260, 40-46. https://doi.org/10.1016/j.jhazmat.2013.04.042
35. Lin, M., Chen, H., Zhang, Z., & Wang, X. (2023). Engineering interface structures for heterojunction photocatalysts. Physical Chemistry Chemical Physics, 25(6), 4388-4407. https://doi.org/10.1039/d2cp05281d
36. Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758. https://doi.org/10.1021/cr00035a013
37. Liu, T., Wang, L., Lu, X., Fan, J., Cai, X., Gao, B., Miao, R., Wang, J., & Lv, Y. (2017). Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways [10.1039/C7RA00199A]. RSC Advances, 7(20), 12292-12300. https://doi.org/10.1039/C7RA00199A
38. Liu, X.-w., Shen, L.-y., & Hu, Y.-h. (2016). Preparation of TiO2-Graphene Composite by a Two-Step Solvothermal Method and its Adsorption-Photocatalysis Property. Water, Air, & Soil Pollution, 227:141. https://doi.org/10.1007/s11270-016-2841-z
39. Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al-Ghamdi, A. A. (2017). Heterojunction Photocatalysts. Advanced Materials, 29(20), 1601694. https://doi.org/https://doi.org/10.1002/adma.201601694
40. Mahanta, U., Khandelwal, M., & Deshpande, A. S. (2022). TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light. Applied Surface Science, 576:151745. https://doi.org/https://doi.org/10.1016/j.apsusc.2021.151745
41. Mashkoor, F., & Nasar, A. (2020). Magsorbents: Potential candidates in wastewater treatment technology – A review on the removal of methylene blue dye. Journal of Magnetism and Magnetic Materials, 500, 166408. https://doi.org/10.1016/j.jmmm.2020.166408
42. Mayerhöfer, T. G., Pahlow, S., & Popp, J. (2020). The Bouguer-Beer-Lambert Law: Shining Light on the Obscure. ChemPhysChem, 21(18), 2029-2046. https://doi.org/https://doi.org/10.1002/cphc.202000464
43. Melgoza, D., Hernandez-Ramírez, A., & Peralta-Hernández, J. (2009). Comparative efficiencies of the decolourisation of Methylene Blue using Fenton's and photo-Fenton's reactions. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 8, 596-599. https://doi.org/10.1039/b817287k
44. Nasikhudin, N., Diantoro, M., Kusumaatmaja, A., & Triyana, K. (2018). Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition. Journal of Physics: Conference Series, 1011:012069. https://doi.org/10.1088/1742-6596/1011/1/012069
45. Ochiai, T., Iizuka, Y., Nakata, K., Murakami, T., Tryk, D. A., Fujishima, A., Koide, Y., & Morito, Y. (2011). Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode. Diamond and Related Materials, 20(2), 64-67. https://doi.org/10.1016/j.diamond.2010.12.008
46. Park, K., Ali, I., & Kim, J.-O. (2018). Photodegradation of perfluorooctanoic acid by graphene oxide-deposited TiO2 nanotube arrays in aqueous phase. Journal of Environmental Management, 218, 333-339. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.04.016
47. Post, G. B., Cohn, P. D., & Cooper, K. R. (2012). Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research, 116, 93-117. https://doi.org/https://doi.org/10.1016/j.envres.2012.03.007
48. Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 40(1), 32-44. https://doi.org/10.1021/es0512475
49. Rey, C., Combes, C., Drouet, C., & Grossin, D. (2011). 1.111 - Bioactive Ceramics: Physical Chemistry. In P. Ducheyne (Ed.), Comprehensive Biomaterials (pp. 187-221). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-055294-1.00178-1
50. Ruan, Q., Bayazit, M. K., Kiran, V., Xie, J., Wang, Y., & Tang, J. (2019). Key factors affecting photoelectrochemical performance of g-C3N4 polymer films. Chemical Communications, 55(50), 7191-7194. https://doi.org/10.1039/c9cc03084k
51. Salazar-Marín, D., Oza, G., Real, J. A. D., Cervantes-Uribe, A., Pérez-Vidal, H., Kesarla, M. K., Torres, J. G. T., & Godavarthi, S. (2024). Distinguishing between type II and S-scheme heterojunction materials: A comprehensive review. Applied Surface Science Advances, 19, 100536. https://doi.org/https://doi.org/10.1016/j.apsadv.2023.100536
52. Sansotera, M., Persico, F., Pirola, C., Navarrini, W., Di Michele, A., & Bianchi, C. L. (2014). Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: Chemical modification of the catalyst surface induced by fluoride ions. Applied Catalysis B: Environmental, 148-149, 29-35. https://doi.org/https://doi.org/10.1016/j.apcatb.2013.10.038
53. Satoh, A. Y., Trosko, J. E., & Masten, S. J. (2007). Methylene Blue Dye Test for Rapid Qualitative Detection of Hydroxyl Radicals Formed in a Fenton's Reaction Aqueous Solution. Environmental Science & Technology, 41(8), 2881-2887. https://doi.org/10.1021/es0617800
54. Shahsavari, E., Rouch, D., Khudur, L. S., Thomas, D., Aburto-Medina, A., & Ball, A. S. (2021). Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Frontiers in Bioengineering and Biotechnology, 8:602040. https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2020.602040
55. Sivakumar, S., Selvaraj, A., Ramasamy, A. K., & Balasubramanian, V. (2013). Enhanced Photocatalytic Degradation of Reactive Dyes over FeTiO3/TiO2 Heterojunction in the Presence of H2O2. Water, Air, & Soil Pollution, 224(5):1529. https://doi.org/10.1007/s11270-013-1529-x
56. Sivaraman, C., Vijayalakshmi, S., Leonard, E., Sagadevan, S., & Jambulingam, R. (2022). Current Developments in the Effective Removal of Environmental Pollutants through Photocatalytic Degradation Using Nanomaterials. Catalysts, 12(5), 544. https://www.mdpi.com/2073-4344/12/5/544
57. Song, C., Chen, P., Wang, C., & Zhu, L. (2012). Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365nm UV irradiation. Chemosphere, 86(8), 853-859. https://doi.org/https://doi.org/10.1016/j.chemosphere.2011.11.034
58. Song, Z., Dong, X., Fang, J., Xiong, C., Wang, N., & Tang, X. (2019). Improved photocatalytic degradation of perfluorooctanoic acid on oxygen vacancies-tunable bismuth oxychloride nanosheets prepared by a facile hydrolysis. Journal of Hazardous Materials, 377, 371-380. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.05.084
59. Sunku, M., Gundeboina, R., Perala, V., Kammara, V., & Vithal, M. (2019). Carbon nanospheres supported visible-light-driven ZnSb2O6: synthesis, characterization and photocatalytic degradation studies. SN Applied Sciences, 1(9), 1046. https://doi.org/10.1007/s42452-019-1078-z
60. Tichapondwa, S. M., Newman, J. P., & Kubheka, O. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Physics and Chemistry of the Earth, Parts A/B/C, 118-119:102900. https://doi.org/https://doi.org/10.1016/j.pce.2020.102900
61. Trenczek-Zajac, A., Synowiec, M., Zakrzewska, K., Zazakowny, K., Kowalski, K., Dziedzic, A., & Radecka, M. (2022). Scavenger-Supported Photocatalytic Evidence of an Extended Type I Electronic Structure of the TiO2@Fe2O3 Interface. ACS Applied Materials & Interfaces, 14(33), 38255-38269. https://doi.org/10.1021/acsami.2c06404
62. Vecitis, C. D., Wang, Y., Cheng, J., Park, H., Mader, B. T., & Hoffmann, M. R. (2010). Sonochemical Degradation of Perfluorooctanesulfonate in Aqueous Film-Forming Foams. Environmental Science & Technology, 44(1), 432-438. https://doi.org/10.1021/es902444r
63. Waghchaure, R. H., Adole, V. A., & Jagdale, B. S. (2022). Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorganic Chemistry Communications, 143, 109764. https://doi.org/10.1016/j.inoche.2022.109764
64. Wang, X., Zhu, M., Koopal, L. K., Li, W., Xu, W., Liu, F., Zhang, J., Liu, Q., Feng, X., & Sparks, D. L. (2016). Effects of crystallite size on the structure and magnetism of ferrihydrite [10.1039/C5EN00191A]. Environmental Science: Nano, 3(1), 190-202. https://doi.org/10.1039/C5EN00191A
65. Wang, Y., Wang, J., Ding, Z., Wang, W., Song, J., Li, P., Liang, J., & Fan, Q. (2022). Light Promotes the Immobilization of U(VI) by Ferrihydrite. Molecules, 27(6), 1859. https://www.mdpi.com/1420-3049/27/6/1859
66. Wang, Y., & Zhang, P. (2011). Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. Journal of Hazardous Materials, 192(3), 1869-1875. https://doi.org/https://doi.org/10.1016/j.jhazmat.2011.07.026
67. White, S. S., Fenton, S. E., & Hines, E. P. (2011). Endocrine disrupting properties of perfluorooctanoic acid. The Journal of Steroid Biochemistry and Molecular Biology, 127(1), 16-26. https://doi.org/https://doi.org/10.1016/j.jsbmb.2011.03.011
68. Wu, Y., Li, Y., Tian, A., Mao, K., & Liu, J. (2016). Selective Removal of Perfluorooctanoic Acid Using Molecularly Imprinted Polymer-Modified TiO 2 Nanotube Arrays. International Journal of Photoenergy, 1-10. https://doi.org/10.1155/2016/7368795
69. Xu, B., Ahmed, M. B., Zhou, J. L., & Altaee, A. (2020). Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere, 243, 125366. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125366
70. Yao, J., & Wang, C. (2010). Decolorization of Methylene Blue with TiO2 Sol via UV Irradiation Photocatalytic Degradation. International Journal of Photoenergy, 2010(1): 643182. https://doi.org/https://doi.org/10.1155/2010/643182
71. Yue, S., Hu, W., Wang, J., Sun, M., Huang, Z., Xie, M., & Yu, Y. (2022). Dramatically promoted photocatalytic water splitting over InVO4 via extending hole diffusion length by surface polarization. Chemical Engineering Journal, 435, 135005. https://doi.org/https://doi.org/10.1016/j.cej.2022.135005
72. Zeng, M. (2013). Influence of TiO2 Surface Properties on Water Pollution Treatment and Photocatalytic Activity. Bulletin of the Korean Chemical Society, 34. https://doi.org/10.5012/bkcs.2013.34.3.953
73. Zhang, Y., Du, X., He, Z., Gao, S., Ye, L., Ji, J., Yang, X., & Zhai, G. (2023). A Vanadium-Based Nanoplatform Synergizing Ferroptotic-like Therapy with Glucose Metabolism Intervention for Enhanced Cancer Cell Death and Antitumor Immunity. ACS Nano, 17(12), 11537-11556. https://doi.org/10.1021/acsnano.3c01527
74. Zhang, Z., Sarkar, D., Biswas, J. K., & Datta, R. (2022). Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. Bioresource Technology, 344, 126223. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126223
75. Zheng, X., Yuan, J., Jing, S., Liang, J., Che, J., Tang, B., He, G., & Chen, H. (2019). A carnation-like rGO/Bi2O2CO3/BiOCl composite: efficient photocatalyst for the degradation of ciprofloxacin. Journal of Materials Science: Materials in Electronics, 30, 5986-5994. https://doi.org/10.1007/s10854-019-00898-w
76. Zhou, X., Lu, J., Jiang, J., Li, X., Lu, M., Yuan, G., Wang, Z., Zheng, M., & Seo, H. J. (2014). Simple fabrication of N-doped mesoporous TiO2 nanorods with the enhanced visible light photocatalytic activity. Nanoscale Research Letters, 9(1), 34. https://doi.org/10.1186/1556-276X-9-34
77. Zhu, B.-S., Jia, Y., Jin, Z., Sun, B., Luo, T., Kong, L.-T., & Liu, J.-H. (2015). A facile precipitation synthesis of mesoporous 2-line ferrihydrite with good fluoride removal properties [10.1039/C5RA15619J]. RSC Advances, 5(103), 84389-84397. https://doi.org/10.1039/C5RA15619J
78. 陳婧(2019) 。利用半揮發性化合物探討黑炭的降解過程。國立成功大學地球科學系,台南市。取自https://hdl.handle.net/11296/g2dnn7