簡易檢索 / 詳目顯示

研究生: 陳柏鈞
Chen, Po-Chun
論文名稱: 三維卷積視覺轉換模型應用於積層製造成品磁特性預測之研究
Application of 3D Convolutional Vision Transformer Model for Predicting Magnetic Properties of Additive Manufacturing Products
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 130
中文關鍵詞: 選擇性雷射熔融磁特性預測深度學習卷積視覺轉換模型熱力圖假設檢定
外文關鍵詞: Selected laser melting, Magnetic property prediction, Deep learning, Convolutional vision transformer, Heat map, Hypothesis test
相關次數: 點閱:119下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著金屬積層製造技術的發展,選擇性雷射熔融(SLM)技術在工業製造中扮演越來越重要的角色。然而,傳統的磁特性預測方法無法滿足現代製造業對效率和精確度的高要求。本研究提出了一種基於三維卷積視覺轉換模型(3D-CVT)的深度學習方法,用於快速且準確地預測SLM製程成品的磁特性。
    3D-CVT模型融合了卷積神經網絡和視覺轉換器的優點,提高了對空間和特徵信息的理解能力,從而在預測磁性能方面達到了比傳統機器學習方法更高的精確度和效率。通過熱力圖技術,我們能夠直觀地展示模型在影像數據中哪些區域的特徵對預測結果影響最大,這有助於我們更好地理解製程參數與成品磁特性之間的關聯。
    此外,本研究採用了假設檢定來評估模型預測的統計顯著性,確保了研究結果的可靠性和有效性。透過這些方法的應用,不僅提升了積層製造的品質監控能力,也為製造業提供了一種高效且經濟的品質預測工具。

    With the development of metal additive manufacturing technology, Selective Laser Melting (SLM) has become increasingly important in industrial manufacturing. However, traditional methods of predicting magnetic properties cannot meet the high demands for efficiency and accuracy required by modern manufacturing. This study introduces a deep learning approach based on the 3D Convolutional Vision Transformer (3D-CVT) model for the rapid and accurate prediction of magnetic properties in SLM process products.

    The 3D-CVT model integrates the advantages of convolutional neural networks and vision transformers, enhancing the understanding of spatial and feature information, thereby achieving higher accuracy and efficiency in predicting magnetic properties compared to traditional machine learning methods. By heat map technology, we can visually display which areas of the image data have the most significant impact on the prediction results, helping us better understand the relationship between process parameters and the magnetic properties of the products.

    Additionally, this study employs hypothesis testing to evaluate the statistical significance of the model predictions, ensuring the reliability and validity of the research results. Through the application of these methods, not only is the quality control capability of additive manufacturing enhanced, but also a highly efficient and economical quality prediction tool is provided for the manufacturing industry.

    摘要 III Application of 3D Convolutional Vision Transformer Model for Predicting Magnetic Properties of Additive Manufacturing Products IV 致謝 XX 目 錄 I 表目錄 IV 圖目錄 V 符號表 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 積層製造技術相關研究 3 1.2.2 磁特性量測技術 4 1.2.3 影像處理與特徵擷取技術 5 1.2.4 深度學習在製造業的應用 6 1.2.5 卷積視覺轉換模型原理與應用 6 1.2.6 結合影像和製程參數進行預測的研究 8 1.3 研究目的與問題 9 1.4 研究方法與流程 11 1.5 論文架構 14 第二章 積層製造與資料前處理 16 2.1 實驗設備與材料 16 2.1.1 實驗設備 16 2.1.2 實驗材料 20 2.2 選擇性雷射熔融 20 2.3 數據收集與預處理 23 第三章 模型設計與優化 29 3.1 概述 29 3.2 卷積神經網絡 (Convolutional Neural Network, CNN) 29 3.3 視覺轉換模型 (Vision Transformer Model, ViT) 31 3.4 CvT模型的基本架構 35 3.5 針對材料磁特性預測任務的模型改進 36 3.5.1 卷積嵌入模塊 36 3.5.2 卷積轉換模塊 39 3.5.3 3D卷積視覺轉換模型 44 3.6 製程參數與影像特徵的融合策略 45 第四章 模型訓練與評估 47 4.1 實驗流程 47 4.1.1 資料搜集 47 4.1.2 軟硬體設備 48 4.2 損失函數與優化器 48 4.3 訓練過程與超參數選擇 49 4.4 評估指標與驗證方法 50 第五章 實驗結果與分析 55 5.1 不同模型的特性對比 55 5.2 預測結果的可視化與分析 61 5.3 預測母體特性的有效性評估 68 5.3.1 假設檢定 68 5.3.2 利用抽樣數據進行的假設檢定 69 5.4 結果與討論 71 第六章 總結與未來展望 72 6.1 研究貢獻總結 72 6.2 未來工作展望 73 參考文獻 76 附錄 80 附錄一、實驗設備與材料的詳細資訊 80 附錄二、模型訓練過程曲線 82 附錄三、預測與測量值分佈 86 附錄四、CvT 與 LightGBM 預測數值比較 90 附錄五、模型特徵圖架構 102

    [1] Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2(4), 041101. https://doi.org/10.1063/1.4935926

    [2] Tucho, W. M., Lysne, V. H., Austbø, H., Sjolyst-Kverneland, A., & Hansen, V. (2018). Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. Journal of Alloys and Compounds, 740, 910-925. https://doi.org/10.1016/j.jallcom.2018.01.098

    [3] Liu, S., Yang, W., Shi, X., Li, B., Duan, S., Guo, H., & Guo, J. (2019). Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy. Journal of Alloys and Compounds, 808, 151160. https://doi.org/10.1016/j.jallcom.2019.06.261

    [4] Giganto, S., Zapico, P., Castro-Sastre, M. Á., Martínez-Pellitero, S., Leo, P., & Perulli, P. (2019). Influence of the scanning strategy parameters upon the quality of the SLM parts. Procedia Manufacturing, 41, 698-705. https://doi.org/10.1016/j.promfg.2019.09.060

    [5] Aqilah, D. N., Sayuti, A. K. M., Farazila, Y., Suleiman, D. Y., Amirah, M. A. N., & Izzati, W. B. W. N. (2018). Effects of process parameters on the surface roughness of stainless steel 316L parts produced by selective laser melting. Journal of Testing and Evaluation, 46(4), 1673–1683. https://doi.org/10.1520/JTE20170140

    [6] Craeghs, T., Clijsters, S., Yasa, E., & Kruth, J.-P. (2011). Online quality control of selective laser melting. In Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2011. http://dx.doi.org/10.26153/tsw/15289

    [7] Chaudhary, V., Mantri, S. A., Ramanujan, R. V., & Banerjee, R. (2020). Additive manufacturing of magnetic materials. Progress in Materials Science, 114, 100688. https://doi.org/10.1016/j.pmatsci.2020.100688

    [8] Chen, Y., Peng, X., Kong, L., Dong, G., Remani, A., & Leach, R. (2021). Defect inspection technologies for additive manufacturing. International Journal of Extreme Manufacturing, 3(2), 022002. https://doi.org/10.1088/2631-7990/abe0d0

    [9] Maurício, J., Domingues, I., & Bernardino, J. (2023). Comparing vision transformers and convolutional neural networks for image classification: A literature review. Applied Sciences, 13, 5521. https://doi.org/10.3390/app13095521

    [10] Bakhtiarnia, A., Zhang, Q., & Iosifidis, A. (2022). Single-layer vision transformers for more accurate early exits with less overhead. Neural Networks, 153, 461-473. https://doi.org/10.1016/j.neunet.2022.06.038

    [11] Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., & Zhang, L. (2021). CvT: Introducing convolutions to vision transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (pp. 22-31). https://doi.org/10.1109/ICCV48922.2021.00009

    [12] Gibson, I., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies (3rd ed.). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-56127-7

    [13] Zhang, B., Li, Y., & Bai, Q. (2017). Defect formation mechanisms in selective laser melting: A review. Chinese Journal of Mechanical Engineering, 30, 515–527. https://doi.org/10.1007/s10033-017-0121-5

    [14] Guo, Q., Zhao, C., Qu, M., Xiong, L., Escano, L. I., Hojjatzadeh, S. M. H., Parab, N. D., Fezzaa, K., Everhart, W., Sun, T., & Chen, L. (2019). In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process. Additive Manufacturing, 28, 600-609. https://doi.org/10.1016/j.addma.2019.04.021

    [15] Campanelli, S. L., Casalino, G., Contuzzi, N., & Ludovico, A. D. (2013). Taguchi optimization of the surface finish obtained by laser ablation on selective laser molten steel parts. Procedia CIRP, 12, 462-467. https://doi.org/10.1016/j.procir.2013.09.079

    [16] Tumański, S. (2011). Handbook of magnetic measurements. CRC Press. https://doi.org/10.1201/b10979

    [17] Fiorillo, F. (2004). Characterization and measurement of magnetic materials. Academic Press. https://doi.org/10.1016/B978-0-12-257251-7.X5000-X

    [18] Jiles, D. C. (2000). Dynamics of domain magnetization and the Barkhausen effect. Czech Journal of Physics, 50, 893–924. https://doi.org/10.1023/A:1022846128461

    [19] Szeliski, R. (2010). Computer vision: Algorithms and applications. Springer London. https://doi.org/10.1007/978-1-84882-935-0

    [20] Materka, A., & Strzelecki, M. (1998). Texture analysis methods–a review. Technical University of Lodz, Institute of Electronics, COST B11 report, Brussels, 10(1.97), 4968.

    [21] Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133-145. https://doi.org/10.1016/S0924-0136(02)00060-2

    [22] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539

    [23] Azimi, S. M., Britz, D., Engstler, M., Fritz, M., & Mücklich, F. (2018). Advanced steel microstructural classification by deep learning methods. Scientific Report, 8, 2128. https://doi.org/10.1038/s41598-018-20037-5

    [24] Holm, E. A., Cohn, R., Gao, N., Kitahara, A. R., Matson, T. P., Lei, B., & Yarasi, S. R. (2020). Overview: Computer Vision and Machine Learning for Microstructural Characterization and Analysis. Metall Mater Trans A 51, 5985–5999. https://doi.org/10.1007/s11661-020-06008-4

    [25] Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48(Part C), 144-156. https://doi.org/10.1016/j.jmsy.2018.01.003

    [26] Weimer, D., Scholz-Reiter, B., & Shpitalni, M. (2016). Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Annals, 65(1), 417-420. https://doi.org/10.1016/j.cirp.2016.04.072

    [27] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. https://doi.org/10.48550/arXiv.2010.11929

    [28] Zhang, Y., Hong, G. S., Ye, D., Zhu, K., & Fuh, J. Y. H. (2018). Extraction and evaluation of melt pool, plume, and spatter information for powder-bed fusion AM process monitoring. Materials & Design, 156, 458-469. https://doi.org/10.1016/j.matdes.2018.07.002

    [29] Scime, L., & Beuth, J. (2018). Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Additive Manufacturing, 19, 114-126. https://doi.org/10.1016/j.addma.2017.11.009

    [30] 陳日昇(2023)。積層製造成品之三維影像建模與品質預測。﹝碩士論文。國立成功大學機械工程學系﹞。 https://hdl.handle.net/11296/u96xbm。

    [31] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980

    [32] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2015). Learning Deep Features for Discriminative Localization. arXiv preprint arXiv:1512.04150. https://doi.org/10.48550/arXiv.1512.04150

    [33] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2019). Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. International Journal of Computer Vision (IJCV). https://doi.org/10.1007/s11263-019-01228-7

    下載圖示
    校外:立即公開
    QR CODE