簡易檢索 / 詳目顯示

研究生: 牛文俊
Niu, Wen-Jun
論文名稱: 銲接熱對鎳基600合金銲件耐蝕性之影響
Influence of thermal history of welding on corrosion resistance of alloy 600 weldment
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 腐蝕銲接熱影響組織惰性氣體鎢棒電弧銲接鎳基600合金
外文關鍵詞: GTAW, alloy 600, corrosion
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以GTAW對不同熱處理後之鎳基600合金進行對接銲,探討銲件熱影響組織微結構的改變及其耐蝕性的變化。並藉由量測銲接入熱量與銲接熱循環,分析銲接溫度之分佈對銲件組織變化的影響。實驗所選用的素材原始狀態為應力消除退火(843℃/1h, Stress Relief)處理,之後分別施以熱時效處理(700℃/24h, Thermal Treatment)及固溶化處理(1100℃/0.5h, Solution Annealing)後進行銲接。
      實驗結果顯示,由微結構觀察可發現,SR試件晶界上析出一層連續的細薄碳化鉻,TT(700℃/24h)試件晶界上之析出物為半連續的碳化鉻,SA(1100℃/0.5h)試件晶界上則沒有明顯析出物產生。SA與TT素材耐蝕性較佳,而SR試件耐蝕性差,其中腐蝕型態皆以沿晶腐蝕為主。
    觀察銲接後之銲件組織,僅SA銲件有銲接衰化區產生,此區發生嚴重沿晶腐蝕導致晶粒剝落,根據熱循環曲線顯示,衰化區於銲接時通過敏化溫度(500~750℃)之時間皆為10秒以上之區域,而冷卻速率約為25~32℃/秒,沿晶界有碳化鉻連續狀態析出,導致銲件抗沿晶腐蝕能力下降而形成銲接衰化區。TT銲件並無明顯的銲接衰化區產生,實驗結果顯示適當的TT熱處理後能有效抑制銲接衰化區的出現。SR銲件雖然沒有觀察到明顯的銲接衰化現象,但其母材之耐蝕性非常差,經過24小時Huey Test腐蝕後,晶粒剝落至幾乎粉碎狀態。
    本實驗利用銲接熱循環量測技術對SA銲件衰化區之預測,可簡單估算出銲接衰化區產生的位置及大概的範圍,搭配後續之銲後熱處理及表面重熔等技術,可事先預防可能發生的破壞情形。

    This study investigated the microstructure and corrosion resistance of Inconel 600 Alloy weldments by GTAW process. The heat treatments of As-received Alloy 600 were stress relieved (SR) at 843℃ for 1 hour. Then Alloy 600 were treated with solution annealed (SA) at 1100℃ for 30 min and thermal treatment (TT) at 700℃ for 24 hours. Their corrosion resistance was evaluated by Huey test.
    Compared to the microstructure in the heat affected zone of these weldments, there was weld decay zone in SA weldment. According to the temperature measurement, it took over 10 seconds to pass through the sensitization range (500~750℃), and the cooling-rate of this zone were between 25~32℃/sec. Cr-carbides precipitate along the grain boundary, and hence to decrease the corrosion resistance in this zone. There was, however, different microstructure in TT weldment. Because of TT heat treatment, Cr-depletion zone has recovery. This effect can prevent weld decay zone forming during welding. SR weldment has poorer corrosion resistance of base metal than the other two. Serious Intergranular corrosion happened (IGC) after 24 hours Huey test.
    We may predict weld decay zone in SA weldment by welding thermal cycle. The weldment could be repaired to prevent rupture.

    總目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 第一章 前言 1 1.1前言 1 1.2文獻回顧 2 第二章 相關理論背景 4 2.1鎳基600合金熱處理 4 2.2鎳基合金的抗蝕性能 8 2.2.1 合金元素影響 8 2.2.2 碳化物型態 9 2.2.3 鎳基超合金的強化機構 9 2.3銲接製程介紹 11 2.4銲接組織 15 第三章 實驗方法與步驟 18 3.1實驗流程規劃 18 3.2實驗材料 20 3.3素材熱處理試驗 21 3.4鎳基600合金自動GTAW銲接 22 3.5銲接熱循環量測 24 3.6 Huey Test 腐蝕試驗 25 3.7實驗儀器與設備 26 第四章 結果與討論 30 4.1鎳基600合金素材熱處理之耐蝕性 30 4.1.1原始素材-應力消除退火(SR) 30 4.1.2固溶化處理(SA) 31 4.1.3 TT處理 31 4.1.4素材熱處理金相 33 4.1.5 熱處理素材之腐蝕速率 33 4.2銲接參數探討 45 4.3銲接熱循環歷程與溫度分布 49 4.4銲接組織耐蝕能力 51 4.4.1原始狀態(SR)銲件組織探討 52 4.4.2 SA銲件組織探討 55 4.4.3 TT銲件組織探討 61 4.5銲件綜合討論 64 第五章 結論 66 第六章 未來研究方向 68 第七章 參考文獻 69

    參考文獻
    1. 財團法人國家政策研究基金會, 核能發電之必要性(譯自The Need of Nuclear Power), 國政研究報告, 2000.
    2. 葉宗洸, 余明昇, "國內外沸水式反應器壓力槽內部組件的劣化問題", 核研季刊, Vol.22, pp. 49-69, 1997.
    3. 梁仲賢, "壓水式核反應器材料的腐蝕與防治對策", 核研季刊, Vol.26, pp. 8-12, 1999.
    4. 賴文貴,“核電廠高溫水質環境的電化學意義”, 核研季刊, Vol.14, pp.32-40, 1995.
    5. T. Ishihiara, "Corrosion Failure and Its Prevention in Light Water Reactor", Welding International, pp. 209-216, 1989(3).
    6. “材料手冊(II)非鐵金屬材料”, 中國材料科學學會, pp.251-324, 1983.
    7. U. S. Nuclear Regulatory Commission, Jet Pump Hold-Down Beam Failure, NRC Information Notice 93-101, 1993.
    8. 葉宗洸, 余明昇, "國內外沸水式反應器壓力槽內部組件的劣化問題", 核研季刊, Vol.22, pp. 49-69, 1997.
    9. 梁仲賢, "壓水式核反應器材料的腐蝕與防治對策", 核研季刊, Vol.26, pp. 8-12 , 1999.
    10. 游章雄, "核電廠管路系統之可靠度分析及預防維護策略研究". 國立台灣大學機械工程研究所博士論文. 2002.
    11. J.R. Crum & R.C. Scarberry, "Corrosion Testing of Inconel Alloy 690 for PWR Steam Generators", Journal Material for Energy Systems, Vol.4(3), pp. 125-130, 1982.
    12. S. S. Hwang, H. P. Kim, D. H. Lee, U. C. Kim, J. S. Kim, “The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead,” Journal of Nuclear Materials 275, pp.28-36, 1999.
    13. 吳宗峰, “鎳基600合金之敏化及電化學再活化特性研究”, 國立成功大學機械工程研究所博士論文. 2002.
    14. T. F. Wu, W. T. Tsai, “Effect of KSCN and its concentration on the reactivation behavior of sensitized alloy 600 in sulfuric acid solution,” Corrosion Sceince 45, pp. 267-280, 2003.
    15. M. Thuvander,, M.K. Miller, K. Stiller, “Grain boundary segregation during heat treatment at 600°C in a model Alloy 600,” Materials Science and Engineering A270, pp. 38–43, 1999.
    16. P. Thibaux, A. Metenier, and C. Xhoffer, “Carbon Diffusion Measurement in Austenite in the Temperature Range 500℃ to 900℃,” Metallurgical and Materials Transaction A, Vol. 38A, pp.1169-1176, June 2007.
    17. Y. S. Lim, J. S. Kim, H. S. Kwon, “Effects of sensitization treatment on the evolution of Cr carbides in rapidly solidified Ni-base Alloy 600 by a CO2 laser baem”, Materials Science and Engineering A279, pp.192-200, 2000.
    18. Y. S. Lim, J. S. Kim, H. S. Kwon, “Microstructural studies on rapidly solidified Alloy 600,” Scripta Materialia, Vol. 34, No.4, pp.625-631, 1996.
    19. Aguilar, J. L. Albarran, H. F. Lopez, L. Martinez, “Microstructural response on the cracking resistance of alloy 600,” Materials Letters 61, pp. 274-277, 2007.
    20. ASM Metals Handbook, Vol. 13
    21. W.L. Mankins & A. McMinn, "Nickel and Nickel Alloys", in Metals Handbook, ASM International. pp. 428-445, 1992.
    22. R. C. Scarberry, S. C. Pearman and J. R. Crum, Corrosion, Vol. 32 No. 10, pp.401, 1976.
    23. J. M. Sarver, J. R. Crum and W. L. Mankins, Corrosion, Vol. 44, No. 5, pp.288, 1988.
    24. ASM Metals Handbook, Vol. 4, pp.2032-2037
    25. H. Nagano, K. Yamanaka, K. Kobayashi and M. Inoue, “Development and Manufacturing System od Alloy 690 Tubing for PWR Steam Generators,” The Sumitomo Search, No. 40, pp.57-70, 1989.
    26. 葉東昌, 李驊登, 鄭勝隆, 郭聰源. "時效熱處理對鎳基690 合金銲件之微觀組織影響之研究", 中國機械工程學會第十六屆學術研討會. 1999.
    27. J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu and S.C. Yao, “The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690,” Metallurgical and Materials Transactions A, Oct., Vol.20A, pp.2057-2067, 1989.
    28. William E. Mayo,“Predicting IGSCC/IGA susceptibility of Ni-Cr-Fe alloys by modeling of grain boundary chromium depletion”, 1997.
    29. ASM Metals Handbook, Vol. 4, pp.2032-2037
    30. Inconel Alloy 600, Special Metals Corporation , 2002.
    31. C. T. Sims, N. S. Stoloff, and W. C. Hagel, “Superalloys II,” Wiley, New York, 1987.
    32. G. P. Airey, “Optimization of Metallurgical Variables to Improve the Stress Corrsion Resistance of Inconel 600,” EPRI NP-1354, Electric Power Research Institute, Palo Alto, California, March 1980.
    33. R. C. Scarberry, S. C. Pearman, and J. R. Crum, “Precipitation Reactions in Inconel Alloy 600 and Their Effect on Corrosion,” Corrosion, 1976.
    34. 王振欽, "銲接學", 2nd ed, 高立圖書,.2003.
    35. http://www.fortunecity.com/village/lind/247/weld_book/fig10-32.gif.
    36. Welding Metallurgy, pp.269-270 ,Sindo Kou
    37. S. Liu and J. E. Indacochea, Metal Handbook, Vol. 1, Property and Selection : Irons, Steels and High-Performance Alloy pp.603-613
    38. p.45 J. H. Suh, J. K. Shin, S. J. L. Kang, “Investigation of IGSCC behavior of sensitized and laser-surface-melted Alloy 600” Materials Science and Engineering A254 , pp.67-75, 1998.
    39. 郭聰源, 李驊登, 葉東昌, 杜青駿, 鄭勝隆, "鎳基690 合金銲件之顯微組織與機械性質研究", 金屬熱處理, Vol.57, pp. 15-22, 1998.
    40. H. B. Smartt, J. A. Stewart, and C. J. Einerson, "Heat Transfer in Gas Tungsten Arc Welding," presented at ASM International Welding Congress, Toronto, Canada, 1985.
    41. P. W. Fuerschbach and G. A. Knorovsky, "A Study of Melting Efficiency in Plasma Arc and Gas Tungsten Arc Welding," Welding Journal, vol. 70, pp. 287s-297s, 1991.
    42. N. Collings, K. Y. Wong, and A. E. Guile, "Efficiency of Tungsten -Inert Gas Arcs in Very High Speed Welding," Proc. Inst. Electr. Engr., vol. 126, pp. 276-280, 1979

    下載圖示 校內:2011-08-20公開
    校外:2011-08-20公開
    QR CODE