簡易檢索 / 詳目顯示

研究生: 李季學
Li, Chi-Hsueh
論文名稱: 利用熱應力模擬分析結合田口方法探討方形扁平無引腳封裝電子元件之結構設計最佳化
Optimization of Structural Design for DFN Package Electronic Components Using Thermal Stress Simulation Analysis Combined with Taguchi Method
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 64
中文關鍵詞: 有限元素法薄型DFN封裝體ANSYS-Workbench電腦輔助設計
外文關鍵詞: Finite Element Method, Thin DFN Package, ANSYS-Workbench, Computer-Aided Design
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用有限元素分析軟體ANSYS-Workbench,探討薄型DFN封裝在高溫到低溫過程中,因各結構之間熱膨脹係數不同而產生的不均勻熱應力。這種不均勻熱應力會導致封裝膠體變形,尤其在高功率元件運作時,產生的高熱會加劇變形。本研究針對高功率半導體電子構裝元件進行熱應力分析及構裝縮小的改善設計,主要探討減少晶片厚度、降低封膠厚度、重新鈍化層厚度,以及晶片端點對外連接大小等因素。研究中採用有限元素分析法,對高溫穩態環境下的構裝元件進行熱應力模擬分析,並使用田口方法找出最佳控制因子組合,以解決由於材料熱膨脹係數不匹配而產生的應力,進而影響封裝中晶片受力的情況。通過對各材料組件的厚度和尺寸進行設計變更,達到封裝最佳化設計,以提升高功率構裝元件的可靠性和品質。

    This paper utilizes the finite element analysis software ANSYS-Workbench to investigate the uneven thermal stress in thin DFN packages caused by the differing coefficients of thermal expansion (CTE) among various structures during the transition from high to low temperatures. This uneven thermal stress can lead to deformation of the encapsulation, especially exacerbated by the high heat generated during the operation of high-power components. The study focuses on thermal stress analysis and design optimization of high-power semiconductor electronic packages, mainly addressing factors such as reducing die thickness, lowering encapsulation thickness, adjusting the re-passivation layer thickness, and modifying the size of external connections at the die endpoints. Finite element analysis was employed to simulate the thermal stress of the packages in a high-temperature steady-state environment, and the Taguchi method was used to identify the optimal combination of control factors. This approach aims to mitigate the stress caused by CTE mismatches among materials, thereby affecting the stress on the die within the package. By modifying the thickness and dimensions of various material components, the study achieves optimized package design, enhancing the reliability and quality of high-power electronic packages.

    中文摘要 I 英文摘要 II 誌謝 IX 目錄 X 圖目錄 XII 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 第二章 IC封裝製程簡介 4 2.1 方形扁平無引腳封裝電子封裝分類 4 2.2 IC封裝製程簡介 6 2.3 翹曲與應力影響 12 第三章 文獻探討 14 3.1 翹曲之物理現象 14 3.2 電子封裝結構受熱應力影響 15 3.3 有限元素法理論原理 17 3.4 田口工程理論基礎 18 3.5 晶片強度量測原理 21 第四章 實驗方法與結果 23 4.1 封裝元件模擬分析假設 23 4.2 封裝尺寸與材料特性說明 23 4.3 前處理暨網格收斂性驗證 25 4.4 網格收斂元素大小設定 25 4.5 初始條件與邊界條件設定 26 4.6 拘束條件的設定 27 4.7 計算求解 27 4.8 後處理分析 28 4.8.1 封膠熱應力分析 28 4.8.2 晶片正面熱應力分析 28 4.8.3 晶片背面熱應力分析 29 4.8.4 重新鈍化層正面應力分析 30 4.8.5 重新鈍化層背面應力分析 30 4.8.6 導線層應力分析 31 4.8.7 結構應力剖面分析 31 4.9 田口品質工程介紹 32 4.10 控制因子品質特性評估選用 32 4.11 實驗性直交表的選用 36 4.12 S/N因子反應分析 36 4.13 田口實驗結果分析說明 38 第五章 結論與未來展望 44 5.1 結論 44 5.2 未來展望 45 參考文獻 46

    1. J. H. Lau, 1990, "Thermal stress analysis of plastic leaded chip carriers," InterSociety Conference on Thermal Phenomena in Electronic Systems, Las Vegas, NV, USA, 57-66.
    2. H. Reichl, A. Schubert and M. Töpper, 2000, ” Reliability of flip chip and chip size packages”, Microelectronics Reliability, 40(8-10), 1243-1254.
    3. 洪立群,2004,”IC封裝元件翹曲分析之研究”,國立成功大學機械工程學系博士論文。
    4. 陳建羽,2006,”以田口實驗方式進行IC封裝元件翹曲之數值模擬”,逢甲大學機械工程研究所碩士班碩士論文。
    5. 許豐庭,2006,”高頻覆晶封裝之熱應力分析”,國立交通大學機械工程學系碩士論文。
    6. 涂文彬,2013,”高功率半導體元件封裝熱應力分析劑改善設計”,國立中興大學精密工程研究所碩士學位論文。
    7. G. Qi and W. Kaikun, 2014, "Study of the thermal field and thermal stress field of typical BGA packaging by numerical simulation", 15th International Conference on Electronic Packaging Technology, Chengdu, China, 971-975.
    8. 張修銘,2015,”運用熱應力模擬分析結合田口法對蕭特基電子元件封裝進行結構設計最佳化探討”,國立中興大學精密工程研究所碩士學位論文。
    9. 王光謙,2015,”黏晶機頂針對薄形晶片應力特性之分析”,國立成功大學工程科學系碩士論文。
    10. C. L. Lu and M. K. Yeh, 2017, "Thermal stress analysis of chip with pressure sensor embedded in accelerometer," International Conference on Electronics Packaging (ICEP), Yamagata, Japan, 540-543.
    11. 林青穆,2019,”薄型QFN封裝於測試插槽時所產生之結構破壞分析與改善”,國立成功大學工程科學系碩士論文。
    12. Y. Peng, W. Gao, Q. Guo and B. Zhang, 2020, "Thermal stress failure analysis of power diode SMBF package," 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 1-3.
    13. J. Liu, W. Wang and X. Zhao, 2020, "Thermal stress simulation analysis of LGA power module package," 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 1-4.
    14. H. Zhang, Z. Wu, M. Meng, X. Wang, Z. Ding, C. Duan, L. Han and F. Li, 2021, "Analysis of crack failure in SMD package caused by thermal stress", 6th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China, 119-123.
    15. Q. Wei, H. Yang, N. Sun, X. Ma and W. Liu, 2022, "Research on improving the delamination of electronic packaging product", 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 1-4.
    16. 李輝煌,2004,“田口方法-品質設計的原理與實務”,高立圖書。
    17. M. K. Grief and J. A. Steele, 1996, "Warpage and mechanical strength studies of ultrathin 150 mm Wafers", IEEE/CPMT Int'l Electronics Manufacturing Technology Symposium, 190-194.
    18. 賴致廷,2012,"粗糙度對單晶矽破壞強度影響研究",國立清華大學碩士論文。
    19. H. H. Jiun, I. Ahmad, A. Jalar and G. Omar, 2006,"Effect of wafer thinning methods towards fracture strength and topography of silicon die," Microelectronics Reliability, 46(5-6), 836-845.
    20. M.Y. Tsai and C.H. Chen, 2008,"Evaluation of test methods for silicon die strength," Journal of Microelectronics Reliability. 933-941.
    21. H. C. Shih, F. Tsai, M. K. Shih, D. Tarng and C. P. Hung, 2019, "An Experimental investigation into thin silicon die strength evaluation", 14th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 187-190.

    無法下載圖示 校內:2026-07-31公開
    校外:2026-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE