| 研究生: |
林昆蔚 Lin, Kun-Wei |
|---|---|
| 論文名稱: |
平面異質接面鈣鈦礦太陽能電池之電極接面層研究 The study of electrode interlayer in planar heterojunction perovskite solar cell |
| 指導教授: |
賴韋志
Lai, Wei-Chih |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、電極接面層 、氧化鎳 、熱氧化鎳金透明導電電極 、低溫濺鍍氧化鋅 |
| 外文關鍵詞: | perovskite-based solar cells, electrode interlayer, NiOx, oxidized Ni/Au transparent electrode, room temperature sputtered ZnO |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以p型無機半導薄膜氧化鎳(NiOx)作為電極接面層應用於鈣鈦礦太陽能電池中取代一般常用之有機電洞傳輸層材料PEDOT:PSS以提升太陽能電池光電轉換電效率。氧化鎳之光穿透率(transmittance)、表面形態和功函數(work function)與熱氧化溫度相關。當氧化鎳之熱氧化溫度上升時,光穿透率與功函數也會隨之上升。以450 度C熱氧化之氧化鎳其功函數為5.4 eV接近CH3NH3PbI3的HOMO能階,由於能階之匹配可減少電洞在接面傳導時的能量損耗進而提升電洞傳輸效率。以氧化鎳作為電極接面層(電洞傳輸層)之鈣鈦礦太陽能電池元件最好的表現達到短路電流JSC=13.16 mA/cm2,開路電壓VOC=0.901 V與光電轉換電效率為7.75%。
由於氧化鎳的導電率較差,因此不足以單獨作為透明導電電極(TCO),因此在本研究中進一步將常使用於LED製程中之熱氧化鎳金(Ni/Au)電極來取代NiOx/ITO與PEDOT:PSS電極結構。於基板上鍍製鎳金雙層結構,再進行高溫退火,鎳金雙層結構在退火時,鎳原子經由金之晶界擴散出表面後氧化形成氧化鎳(NiOx),而金(Au)則形成網狀結構(network structure),此氧化鎳適合應用於鈣鈦礦太陽能電池中作為電洞傳輸之接面層並可作為電子阻擋層。熱氧化鎳金電極(Au:NiOx)作為透明導電電極,可簡化製程,降低成本,並可提高鈣鈦礦太陽能電池元件之操作穩定性。以Au:NiOx透明導電電極應用於鈣鈦礦太陽能電池元件中,最好的元件特性其開路電壓為VOC=1.02 V, 短路電流JSC=13.04 mA/cm2,填充因子FF=77% 與光電轉換電效率為10.24%。
此外,我們將低溫濺鍍之氧化鋅(ZnO)薄膜應用於倒置型鈣鈦礦太陽能電池結構中作為電子傳輸層,氧化鋅具有與鈣鈦礦吸收層之LUMO能階(3.9 eV)相近之導帶能階(4.2 eV)可有效提升電子傳輸效率。但氧化鋅之濺鍍製程中電漿過程會使鈣鈦礦薄膜因電漿轟擊而損傷,進而導致元件失效。因此在本研究中,使用C60來做為保護層且C60之導帶能階(4.1 eV)與鈣鈦礦、氧化鋅有良好之能階匹配,可降低電子傳輸能量損失。以C60/氧化鋅作為電子傳輸層之鈣鈦礦太陽能電池元件由無光電轉換電效率提升至短路電流JSC=19.41 mA/cm2,開路電壓VOC=0.91 V,與光電轉換電效率為10.93%。
In this study, we successfully applied a thin, p-type, semiconducting, inorganic NiOx layer as substitute for PEDOT:PSS, and the perovskite-based solar cells consisting of NiOx as electrode interlayer improve device performance. The transmittance, surface morphology, and work function of Ni-oxidized NiOx are strongly related to the Ni oxidation temperature. The transmittance and work function increased in accord with the increased oxidation temperature of the Ni-oxidized NiOx layer. The larger transmittance and work function of Ni-oxidized NiOx can result in less light absorption and hole transport energy loss, respectively. The CH3NH3PbI3 perovskite-based solar cells with a NiOx hole transport layer yield better short circuit current density of 13.16 mA/cm2, open circuit voltage of 0.901 V, and power conversion efficiency of 7.75% than that of CH3NH3PbI3 perovskite-based solar cells with a PEDOT:PSS interlayer.
However, the electric conductivity of NiOx layer is still insufficient to be solely used as the transparent conductive oxide (TCO) electrode. We then proposed oxidized Ni/Au transparent electrode as replacement for NiOx/ITO layers of perovskite-based solar cells. This work first and successfully demonstrates the application of the well-developed nickel (Ni)/gold (Au) transparent electrode in GaN light-emitting diodes industry for fabricating efficient perovskite-based solar cells. To prepare the electrode and the electrode interlayer in one single process simplifies fabricating procedures, and poses to the new design of the functionalized electrode in perovskite-based hybrid devices. The combination of NiOx with the interconnected network Au forms a functionalized Au:NiOx electrode, capable of transporting holes and blocking electrons from CH3NH3PbI3 perovskite to reach the electrode. Changing Ni/Au compositions and the thermal treatment conditions modulates the optical transparency, electrical conductivity, the work function of Au:NiOx electrode, as well as the photovoltaic parameters of hybrid cells. The cell with the configuration of glass/Au:NiOx/CH3NH3PbI3 perovskite/C60/BCP/Al is free of the ITO electrode and PEDOT:PSS interlayer to achieve an open circuit voltage of 1.02 V, a short circuit current density of 13.04 mA/cm2, and a fill factor of 77%, corresponding to a decent power conversion efficiency of 10.24% under standard 1 sun AM 1.5G simulated solar irradiation.
In addition, we have demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells with a room temperature (RT) sputtered ZnO electron transport layer by adding fullerene (C60) interlayer. ZnO has a matched conduction band level (4.2 eV) with the unoccupied molecular orbital (LUMO) level of perovskite (3.9 eV), which can enhance the transport efficiency of photo-generated electron to escape solar cells. However, the CH3NH3PbI3 perovskite layer will be damaged during direct RT sputtering deposition of ZnO. Therefore, the C60 interlayer having matched conduction band level with ZnO and CH3NH3PbI3 perovskite added between the CH3NH3PbI3 perovskite and RT sputtered ZnO layers for protection prevents sputtering damages on the CH3NH3PbI3 perovskite layer. The short circuit current density (19.41 mA/cm2), open circuit voltage (0.91 V) and power conversion efficiency (10.93%) of the solar cells with glass/ITO/PEDOT:PSS/perovskite/
C60/RT sputtered ZnO/Al structure is higher than the JSC (16.23 mA/cm2), VOC (0.90 V) and power conversion efficiency (10.6%) of the solar cell with glass/ITO/PEDOT:PSS/perovskite/C60/BCP/Al structure.
[1]Z. Cheng, and J. Lin, “Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering,” CrystEngComm 12, 2646 (2010).
[2]M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643 (2012).
[3]J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13, 1764 (2013).
[4]J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics 7, 486 (2013).
[5]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050 (2009).
[6]L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Gratzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells,” J. Am. Chem. Soc. 134, 17396 (2012).
[7]H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[8]J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays,” Nanoscale 5, 3245 (2013).
[9]H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, and N.-G. Park, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 2412 (2013).
[10]A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K. Y. Jen, and H. J. Snaith, “High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers,” Nano Lett. 13, 3124 (2013).
[11]B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, and J. Qiu, “High performance hybrid solar cells sensitized by organolead halide perovskites,” Energy Environ. Sci. 6, 1480 (2013).
[12]J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316 (2013).
[13]M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395 (2013).
[14]G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24, 151 (2014).
[15]E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Gratzel, and F. De Angelis, “First-principles modeling of mixed halide organometal perovskites for photovoltaic applications,” J. Phys. Chem. C 117, 13902 (2013).
[16]U. B. Cappel, T. Daeneke, and U. Bach, “Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance,” Nano Lett. 12, 4925 (2012).
[17]P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nat. Commun. 4, 2761 (2013).
[18]S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, and Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy Environ. Sci. 7, 399 (2014).
[19]M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, “Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells,” Chem. Commun. 49, 11089 (2013).
[20]Y.-F. Chiang, J.-Y. Jeng, M.-H. Lee, S.-R. Peng, P. Chen, T.-F. Guo, T.-C. Wen, Y.-J. Hsu, and C.-M. Hsu, “High voltage and efficient bilayer heterojunction solar cells based on an organic–inorganic hybrid perovskite absorber with a low-cost flexible substrate,” Phys. Chem. Chem. Phys. 16, 6033 (2014).
[21]J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen, “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25, 3727 (2013).
[22]P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin, and A. K.-Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26, 3748 (2014).
[23]J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility,” ACS Nano 8, 1674 (2014).
[24]K.-G. Lim, H.-B. Kim, J. Jeong, H. Kim, J. Y. Kim, and T.-W. Lee, “Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function,” Adv. Mater. 26, 6461 (2014).
[25]C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, “Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells,” Nat. Commun. 6, 7747 (2015).
[26]F. X. Xie, D. Zhang, H. Su, X. Ren, K. S. Wong, M. Gratzel, and W. C. H. Choy, “Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells,” ACS Nano 9, 639 (2015).
[27]W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522 (2015).
[28]H. Kim, K.-G. Lim, and T.-W. Lee, “Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,” Energy Environ. Sci. 9, 12 (2016).
[29]J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088 (2011).
[30]D. Bi, G. Boschloo, S. Schwarzmuller, L. Yang, E. M. J. Johansson, and A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale 5, 11686 (2013).
[31]H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park, and J. Bisquert, “Mechanism of carrier accumulation in perovskite thin-absorber solar cells,” Nat. Commun. 4, 2242 (2013).
[32]D. Bi, S.-J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Gratzel, and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Adv. 3, 18762 (2013).
[33]D. Liu, and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133 (2014).
[34]H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,” Science 345, 542 (2014).
[35]C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, and H.-W. Lin, “Efficient and uniform planar-type perovskite solar cells by simple sequential Vacuum Deposition,” Adv. Mater. 26, 6647 (2014).
[36]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234 (2015).
[37]N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137, 8696 (2015).
[38]O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Gratzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photon. 8, 128 (2014).
[39]D. Zhao, M. Sexton, H.-Y. Park, S. Liu, G. Baure, J. C. Nino, and F. So, “High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer,” Adv. Energy Mater. 5, 1401855 (2015).
[40]T.-Y. Chiang, G.-L. Fan, J.-Y. Jeng, K.-C. Chen, P. Chen, T.-C. Wen, T.-F. Guo, and K.-T. Wong, “Functional p-type, polymerized organic electrode interlayer in CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells,” ACS Appl. Mater. Interfaces 7, 24973 (2015).
[41]F. Xi, F. Guojia, C. Fei, Q. Pingli, H. Huihui, and L. Yongfang, “Enhanced performance and stability in PBDTTT-C-T:PC70BM polymer solar cells by optimizing thickness of NiOx buffer layers,” J. Phys. D: Appl. Phys. 46, 305106 (2013).
[42]A. Garcia, G. C. Welch, E. L. Ratcliff, D. S. Ginley, G. C. Bazan, and D. C. Olson, “Improvement of interfacial contacts for new small-molecule bulk-heterojunction organic photovoltaics,” Adv. Mater. 24, 5368 (2012).
[43]S.-Y. Park, H.-R. Kim, Y.-J. Kang, D.-H. Kim, and J.-W. Kang, “Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer,” Sol. Energy Mater. Sol. Cells 94, 2332 (2010).
[44]J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, “Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells,” Adv. Funct. Mater. 23, 2993 (2013).
[45]J.-Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, and Y.-J. Hsu, “Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells,” Adv. Mater. 26, 4107 (2014).
[46]K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, and T.-C. Wen, “P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells,” Sci. Rep. 4, 4756 (2014).
[47]M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” PNAS 105, 2783 (2008).
[48]E. A. Gibson, A. L. Smeigh, L. L. Pleux, J. Fortage, G. Boschloo, E. Blart, Y. Pellegrin, F. Odobel, A. Hagfeldt, and L. Hammarstrom, “A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V,” Angew. Chem. Int. Ed. 48, 4402 (2009).
[49]A. Nattestad, A. J. Mozer, M. K. R. Fischer, Y.-B. Cheng, A. Mishra, P. Bauerle, and U. Bach, “Highly efficient photocathodes for dye-sensitized tandem solar cells,” Nat. Mater. 9, 31 (2010).
[50]E. L. Ratcliff, A. Garcia, S. A. Paniagua, S. R. Cowan, A. J. Giordano, D. S. Ginley, S. R. Marder, J. J. Berry, and D. C. Olson, “Investigating the influence of interfacial contact properties on open circuit voltages in organic photovoltaic performance: work function versus selectivity,” Adv. Energy Mater. 3, 647 (2013).
[51]D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells,” J. Mater. Chem. A 2, 19873 (2014).
[52]K. Mahmood, B. S. Swain, and A. Amassian, “Double-layered ZnO nanostructures for efficient perovskite solar cells,” Nanoscale 6, 14674 (2014).
[53]J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. 50, 13381 (2014).
[54]H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, and T. Ma, “Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells,” J. Phys. Chem. C 119, 4600 (2015).
[55]J. Zhang, P. Barboux, and T. Pauporte, “Electrochemical design of nanostructured ZnO charge carrier layers for efficient solid-state perovskite-sensitized solar cells,” Adv. Energy Mater. 4, 1400932 (2014).
[56]Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter 16, R829 (2004).
[57]O. Lupan, V. M. Guerin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporte, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. A 211, 65 (2010).
[58]B.V. Lotsch, “New light on an old story: Perovskites go solar,” Angew. Chem. Int. Ed. 53, 635 (2014).
[59]Z. Song, S. C. Watthage, A. B. Phillips, and M. J. Heben, “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications,” J. Photon. Energy 6, 022001 (2016).
[60]S. Chavhan, O. Miguel, H.-J. Grande, V. Gonzalez-Pedro, R. S. Sanchez, E. M. Barea, I. Mora-Sero, and R. Tena-Zaera, “Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact,” Journal of Materials Chemistry A 2, 12754 (2014).
[61]G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 344 (2013).
[62]S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.” Science 342, 341 (2013).
[63]C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.-P. Wolf, and V. Sundstrom, “Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination,” J. Am. Chem. Soc. 136, 5189 (2014).
[64]V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, and H. J. Snaith, “Excitons versus free charges in organo-lead tri-halide perovskites, ” Nat. Commun. 5, 3586 (2014).
[65]S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, “Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states, ” Phys. Rev. Appl. 2, 034007 (2014).
[66]M.-H. Li, P.-S. Shen, K.-C. Wang, T.-F. Guo, and P. Chen, “Inorganic p-type contact materials for perovskite-based solar cells,” J. Mater. Chem. A 3, 9011 (2015).
[67]G. Y. Kim, S. H. Oh, B. P. Nguyen, W. Jo, B. J. Kim, D. G. Lee, and H. S. Jung, “Efficient carrier separation and intriguing switching of bound charges in inorganic-organic lead halide solar cells,” J. Phys. Chem. Lett. 6, 2355 (2015).
[68]W. Melitz, J. Shen, A. C. Kummel, and S. Lee, “Kelvin probe force microscopy and its application,” Surface Science Reports 66, 1 (2011).
[69]J. A. Christians, R. C. M. Fung, and P. V. Kamat, “An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide,” J. Am. Chem. Soc. 136, 758 (2014).
[70]S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, and C. Huang, “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Letters 15, 3723 (2015).
[71]J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nano-structured P-Type NiO Electrode Formed by a Pulsed Laser Deposition,” Adv. Mater. 27, 4013 (2015).
[72]S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N. G. Park, J. Y. Kim, and H. Shin, “An Ultra-Thin, Un-Doped NiO Hole Transporting Layer of Highly Efficient (16.4%) Organic-Inorganic Hybrid Perovskite Solar Cells,” Nanoscale 8, 11403 (2016).
[73]C.-W. Chen, S.-Y. Hsiao, C.-Y. Chen, H.-W. Kang, Z.-Y. Huang, and H.-W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar,” J. Mater. Chem. A 3, 9152 (2015).
[74]B. G. Baker, B. B. Johnson, and G. L. C. Maire, “Photoelectric work function measurements on nickel crystals and films,” Surf. Sci. 24, 572 (1971).
[75]A. Kim, H. Lee, H.-C. Kwon, H. S. Jung, N.-G. Park, S. Jeong, and J. Moon, “Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells,” Nanoscale 8, 6308 (2016).
[76]T.-B. Song, Y. S. Rim, F. Liu, B. Bob, S. Ye, Y.-T. Hsieh, and Y. Yang, “Highly Robust Silver Nanowire Network for Transparent Electrode,” ACS Appl. Mater. Interfaces 7, 24601 (2015).
[77]H. Lee, S. Hong, J. Lee, Y. D. Suh, J. Kwon, H. Moon, H. Kim, J. Yeo, and S. H. Ko, “Highly Stretchable and Transparent Supercapacitor by Ag–Au Core–Shell Nanowire Network with High Electrochemical Stability,” ACS Appl. Mater. Interfaces 8, 15449 (2016).
[78]J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, W. and C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett. 74, 2340 (1999).
[79]T. Maeda, Y. Koide, and M. Murakami, “Effects of NiO on electrical properties of NiAu-based ohmic contacts for p-type GaN,” Appl. Phys. Lett. 75, 4145 (1999).
[80]L.-C. Chen, F.-R. Chen, J.-J. Kai, L. Chang, J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, C.-Y. Chen, and K.-K. Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN,” J. Appl. Phys. 86, 3826 (1999).
[81]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13, 897 (2014).
[82]M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. 126, 10056 (2014).
[83]H. Sung, N. Ahn, M. S. Jang, J.-K. Lee, H. Yoon, N.-G. Park, and M. Choi, “Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency,” Adv. Energy Mater. 6, 1501873 (2016).
[84]K. Sun, P. Li, Y. Xia, J. Chang, and J. Ouyang, “Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode,” ACS Appl. Mater. Interfaces 7, 15314 (2015).
[85]T. Liu, L. Zuo, T. Ye, J. Wu, G. Xue, W. Fu, and H. Chen, “Low temperature processed ITO-free perovskite solar cells without a hole transport layer,” RSC Adv. 5, 94752 (2015).
[86]M. Kaltenbrunner, G. Adam, E. D. G?owacki, M. Drack, R. Schwodiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, “Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air,” Nat. Mater. 14, 1032 (2015).
[87]K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photon. 6, 809 (2012).
[88]J. You, L. Meng, T.-B. Song, T.-F. Guo, Y.(Michael) Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotech. 11, 75 (2016).
[89]W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gratzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350, 944 (2015).
[90]S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K.-Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett. 92, 253301 (2008).
[91]W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, and C. Huang, “High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer,” Nanoscale 8, 10806 (2016).
[92]Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, and S. Yang, “High?Performance Hole?Extraction Layer of Sol–Gel?Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells,” Angew. Chem. Int. Ed. 53, 12571 (2014).
[93]C. Magne, T. Moehl, M. Urien, M. Gratzel, and T. Pauporte, “Effects of ZnO film growth route and nanostructure on electron transport and recombination in dye-sensitized solar cells,” J. Mater. Chem. A 1, 2079 (2013).
[94]K. Mahmood, R. Munir, B. S. Swain, G.-S. Han, B.-J. Kim, and H. S. Jung, “Study on the enhanced and stable field emission behavior of a novel electrosprayed Al-doped ZnO bilayer film,” RSC Adv. 4, 9072 (2014).
[95]A. H. Jayatissa, A. Nadarajah, and A. K. Dutta, “Investigation of C60 films for surface finishing applications,” Proc. SPIE 6002, Nanofabrication: Technologies, Devices, and Applications II, 60021A (2005).