| 研究生: |
王春森 Wang, Chun-Sen |
|---|---|
| 論文名稱: |
材料聲阻抗於水中之預測與分析 Inversion and analysis for acoustic impedance of underwater materials |
| 指導教授: |
涂季平
Too, Gee-Pinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 聲阻抗 、數值模擬 、多層倒傳遞類神經網路 |
| 外文關鍵詞: | Acoustic Impedance, Numerical Simulation, Multi-Layer Perceptrons(MLP) networks |
| 相關次數: | 點閱:115 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
材料聲阻抗為材料重要聲學性質之一,使用阻抗管量測為常見的量測方式,卻僅限於一維平面波的條件之下,為了可以擺脫此限制,本研究通過有限元素分析軟體Abaqus以及多層倒傳遞類神經網路,進行材料聲阻抗的預測與分析。本文研究目的為預測成大拖航水槽之槽壁聲阻抗,一開始考慮到模擬數據的參考價值,故透過模擬充水阻抗管,進行確定Abaqus分析的可靠性,在確定理論計算與結果成立後,由Abaqus模擬分析數據並進行資料庫的建置,訓練資料蒐集完成後,便建構預測材料聲阻抗之多層倒傳遞類神經網路(Multi-Layer Perceptrons,簡稱MLP),將水槽聲場聲壓大小及相位變化做為特徵進行訓練,找出與材料聲阻抗的關係,訓練完成的模型則可以通過量測水槽聲場聲壓大小及相位,來預測材料的聲阻抗。
Acoustic impedance is one of the important acoustic properties of materials. It is a common method to measure acoustic impedance by impedance tube method, but it is limited to one-dimensional plane wave. In order to overcome of the limitation, this research applies finite element analysis software and neural network to inverse and analyze the acoustic impedance of underwater materials. The purpose of this study is to predict the acoustic impedance of the towing tank walls.
At the beginning, considering the reliability of the simulation data, the reliability of the simulation data was determined through the simulation and theory of the water-filled impedance tube. After the reliability of the simulation data is determined, the simulation analysis of the towing tank is started, and the database is established.
Sound pressure of towing tank of numerical simulation are used as features for training to find out the relationship with the acoustic impedance of the material and construct a Multi-Layer Perceptrons(MLP) networks for predicting the acoustic impedance of materials. The trained model can predict the acoustic impedance of the material by measuring the sound pressure.
[1] T. Yoshida, T. Okuzono, and K. Sakagami, "Implementation of a frequency-dependent impedance boundary model into a room acoustic solver with time-domain finite element method," Acoustical Science and Technology, vol. 41, no. 6, pp. 819-822, 2020.
[2] B. Mondet, J. Brunskog, C. H. Jeong, and J. H. Rindel, "From absorption to impedance: Enhancing boundary conditions in room acoustic simulations," Applied Acoustics, Article vol. 157, p. 13, Jan 2020.
[3] 蔡宜芬,泡沫無機聚合物材質與微結構對其隔音性能之數值分析,碩士論文,成功大學土木工程學系,2012.
[4] G. Pablo Nava, Y. Yasuda, Y. Sato, and S. Sakamoto, "On the in situ estimation of surface acoustic impedance in interiors of arbitrary shape by acoustical inverse methods," Acoustical Science and Technology, vol. 30, 2009.
[5] 蔡夏生,聲學阻抗管之內部聲場模擬與設計參數評估,碩士論文,逢甲大學電聲碩士學位學程,2009.
[6] 董昌銘,利用充水阻抗管及三參數校正法量測材料在水中的聲音阻抗,碩士論文,成功大學水利及海洋工程學系,2016.
[7] J. Liu, J. Z. Zhang, and Z. L. Huang, "Accurate estimation of acoustic impedance based on spectral inversion," Geophysical Prospecting, vol. 66, no. 1, pp. 169-181, Jan 2018.
[8] 黃淑枝,應用類神經網路預測材料聲阻抗之研究,碩士論文,成功大學造船及船舶機械工程學系,2003.
[9] 邱冠杰,使用非向量L-BFGS演算法之支持向量機影像分類架構,碩士論文,臺灣大學電子工程學研究所,2021.
[10] 湯兆緯、陳芸岫、鄭秋桂、陳玉萍,應用多層倒傳遞類神經網路預測鋼筋混凝土深梁之剪力強度,中國土木水利工程學刊,頁41-54,2011.
[11] Z. D. Zhang, N. Vlahopoulos, and S. T. Raveendra, "Formulation of a numerical process for acoustic impedance sensitivity analysis based on the indirect boundary element method," Engineering Analysis with Boundary Elements, vol. 27, no. 7, pp. 671-681, Jul 2003.
[12] 潘國良,吸音材聲學阻抗之量測,車輛研測資訊:財團法人車輛測試中心,頁21-29,2003.
[13] L. Börgesson, "ABAQUS," in Developments in Geotechnical Engineering, vol. 79, O. Stephansson, L. Jing,and C.-F. Tsang Eds. : Elsevier, pp. 565-570, 1996.
[14] Y. G. Guo, N. Wang, and J. X. Lin, "Experimental verification of acoustic impedance inversion," China Ocean Engineering, vol. 17, no. 1, pp. 143-149, 2003.
[15] J. Piechowicz, "Estimating Surface Acoustic Impedance With the Inverse Method," International Journal of Occupational Safety and Ergonomics,vol. 17,no. 3,pp. 271-276, 2011.
[16] M. Abdullahi and S. O. Oyadiji, "Acoustic Wave Propagation in Air-Filled Pipes Using Finite Element Analysis," Applied Sciences, vol. 8, no. 8, pp. 1318, 2018.
[17] Y. H. Berthelot, "Surface acoustic impedance and causality," Journal of the Acoustical Society of America, vol. 109, no. 4, pp. 1736-1739, Apr 2001.
[18] R. Boonen, P. Sas, W. Desmet, W. Lauriks, and G. Vermeir, "Calibration of the two microphone transfer function method with hard wall impedance measurements at different reference sections," Mechanical Systems and Signal Processing, vol. 23, no. 5, pp. 1662-1671, Jul 2009.
[19] O. Doutres, Y. Salissou, N. Atalla, and R. Panneton, "Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube," Applied Acoustics, vol. 71, no. 6, pp. 506-509, Jun 2010.
[20] A. J. Hull and C. J. Radcliffe, "AN EIGENVALUE BASED ACOUSTIC-IMPEDANCE MEASUREMENT TECHNIQUE," Journal of Vibration and Acoustics-Transactions of the Asme, vol. 113, no. 2, pp. 250-254, Apr 1991.
[21] W. Sumelka and T. Łodygowski, Limitations in application of the Finite Element Method in Acoustic Numerical Simulations of the University Assembly Hall MAGNA. 2005.
[22] L. Fan, S. Y. Zhang, and H. Zhang, "Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory," Chinese Physics Letters, vol. 28, no. 10, Oct 2011.
[23] 邱大維,水下阻抗管之設計與吸音材量測,碩士論文,臺灣大學工程科學及海洋工程學研究所,2003.
[24] W. Chen, Z. Wang, and J. Zhou, "Large-scale L-BFGS using MapReduce," presented at the Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1, Montreal, Canada, 2014.
[25] 维基百科编者,激發函数,维基百科,自由的百科全書.