簡易檢索 / 詳目顯示

研究生: 林子韡
Lin, Tzu-Wei
論文名稱: 跑步機運動與滾輪運動對海馬迴及杏仁核相關恐懼制約學習之影響
Differential effects of treadmill running and wheel running on fear conditioned learning and memory: roles of hippocampal and amygdalar adaptations
指導教授: 任卓穎
Jen, Chauying J
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 68
中文關鍵詞: 運動學習與記憶神經型態突觸蛋白腦源神經生長因子
外文關鍵詞: Exercise, Learning, Memory, Neuronal morphology, synaptic proteins, BDNF
相關次數: 點閱:105下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生理運動可以透過增加腦源神經生長因子(BDNF)進而促進動物學習及記憶功能。已知強制性跑步機運動及自主性滾輪運動對小鼠在莫氏水迷宮(Morris water maze)及被動避險(passive avoidance)學習與記憶表現上產生不同影響。兩種運動皆能促進小鼠在莫氏水迷宮測試上之學習與記憶表現,然而只有強制性跑步機運動能改善小鼠之被動避險學習與記憶,此乃因前者提升了杏仁核BDNF及突觸標的融合蛋白(synaptotagmin I)之表現。據此,設立研究假說,即不同運動模式藉由影響不同腦區神經可塑性蛋白質表現,進而影響不同形式學習記憶之表現,而此現象亦應可在它種動物得到印証。為證實此假說,我們使用兩種不同運動方式訓練大鼠,並以兩種相近的學習記憶法(海馬迴依賴型環境恐懼制約contextual fear conditioning及杏仁核依賴型線索恐懼制約cued fear conditioning)測試其學習與記憶表現之異同。Sprague-Dawley大鼠隨機分成強制性跑步機運動、自主性滾輪運動及無運動組別,在四週訓練結束後,接受海馬迴依賴型環境恐懼制約及杏仁核依賴型線索恐懼制約的學習記憶測試,或直接犧牲檢驗相關腦區中BDNF受體TrkB、synaptotagmin I、synaptotagmin IV及SNAP-25蛋白之表現以及神經細胞之型態。研究結果顯示:1)兩種運動皆能提昇大鼠對環境恐懼制約學習能力; 2)然只有強制性跑步機運動能促進大鼠對線索恐懼制約學習能力; 3)兩種運動皆能促進海馬迴TrkB及SNAP-25蛋白分子之表現,但只有強制性跑步機運動能提升動物杏仁核TrkB及SNAP-25蛋白分子之表現; 4)不論強制性跑步機運動或自主性滾輪運動對大鼠腦中臨邊系統(brain limbic tissues) 之synaptotagmin I及synaptotagmin IV蛋白表現皆無顯著影響; 5)在相關腦區中給予TrkB抑制劑K252a皆會抑制運動所促進之對應恐懼制約的學習能力; 6)強制性跑步機運動能提升大鼠杏仁核側底核神經錐狀細胞樹突之生長; 7)兩種運動對大鼠海馬迴之齒狀回顆粒細胞樹突之生長並無顯著性影響。因此,強制性跑步機運動或自主性滾輪運動對動物不同形式之學習記憶能產生不同之影響,可肇因於兩種不同運動模式能對動物海馬迴及杏仁核突觸可塑性相關蛋白質表現及相關腦區內神經的型態產生不同之影響。

    Exercise increases the level of brain-derived neurotrophic factor (BDNF) and enhances learning and memory. Studies from our laboratory have demonstrated that chronic treadmill and wheel running differentially affect the mouse’s performance in Morris water maze and passive avoidance. Both exercise paradigms improve the former task, while only treadmill running improves the latter. Moreover, the treadmill running-improved passive avoidance performance requires the upregulation of amygdalar BDNF signaling pathway and synaptotagmin I (Syt I) expression. Therefore, the differential effects of two exercise paradigms on different forms of learning and memory are likely due to the exercise-induced adaptations in different brain regions. Whether this hypothesis holds true in other animal models of learning and memory remains to be verified. In this study, we investigated the effects of treadmill and wheel running in rats on two closely related learning and memory tasks, i.e., the hippocampus-dependent contextual fear conditioning and amygdala-dependent cued fear conditioning. Sprague-Dawley rats were randomly assigned to treadmill, wheel running, or sedentary groups. At the end of 4-wk training period, rats either received two fear conditioning tests or were sacrificed for brain regional examinations of neuroplasticity-related molecules (TrkB, Syt I, Syt IV and SNAP-25) and local neuron morphology. Our results indicated that 1) both forms of exercise elevated contextual fear learning; 2) treadmill running, but not wheel running, facilitated cued fear learning; 3) both forms of exercise increased hippocampal TrkB and SNAP-25 levels, but only treadmill significantly increased amygdalar TrkB and SNAP-25 levels; 4) neither forms of exercise significantly affected the expression of Syt I and Syt IV in the brain limbic tissues; 5) local injection of K252a ( a TrkB kinase inhibitor) into hippocampus or amygdala abolished the exercise-facilitated contextual or cued fear learning performance; 6) treadmill running increased the number of dendritic branches and total dendritic length of pyramidal cells in the basolateral amygdala; 7) neither forms of exercise significantly affected the morphology of granule cells in the hippocampal dentate gyrus. Taken together, different exercise paradigms exerted differential effects on hippocampus-dependent and amygdala-dependent learning due to diverse impacts on the synaptic plasticity-related proteins expression in the hippocampus and amygdala. Moreover, such effects might be accompanied with local changes in neuronal morphology.

    Abstract in chinese........................................3 Abstract in english........................................5 Abbreviation...............................................9 List of Figure............................................10 Introduction..............................................12 Hypothesis and Experiment Design..........................18 Materials and Methods.....................................19 Results...................................................32 Discussion................................................37 References................................................44 Figures...................................................50

    1.Chiba, A.A., R.P. Kesner, and A.M. Reynolds, Memory for spatial location as a function of temporal lag in rats: role of hippocampus and medial prefrontal cortex. Behav Neural Biol, 1994. 61(2): p. 123-31.
    2.Cahill, L., et al., Is the amygdala a locus of "conditioned fear"? Some questions and caveats. Neuron, 1999. 23(2): p. 227-8.
    3.Fanselow, M.S. and J.E. LeDoux, Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 1999. 23(2): p. 229-32.
    4.Squire, L.R. and S. Zola-Morgan, The medial temporal lobe memory system. Science, 1991. 253(5026): p. 1380-6.
    5.Mahut, H., S. Zola-Morgan, and M. Moss, Hippocampal resections impair associative learning and recognition memory in the monkey. J Neurosci, 1982. 2(9): p. 1214-20.
    6.Zola-Morgan, S. and L.R. Squire, Memory impairment in monkeys following lesions limited to the hippocampus. Behav Neurosci, 1986. 100(2): p. 155-60.
    7.Davis, M., Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci, 1986. 100(6): p. 814-24.
    8.Chen, G., et al., Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J Neurosci, 1999. 19(18): p. 7983-90.
    9.Mizuno, M., et al., Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem, 2003. 10(2): p. 108-15.
    10.Tyler, W.J., et al., From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem, 2002. 9(5): p. 224-37.
    11.Poo, M.M., Neurotrophins as synaptic modulators. Nat Rev Neurosci, 2001. 2(1): p. 24-32.
    12.Tyler, W.J., S.P. Perrett, and L.D. Pozzo-Miller, The role of neurotrophins in neurotransmitter release. Neuroscientist, 2002. 8(6): p. 524-31.
    13.Levine, E.S., et al., Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc Natl Acad Sci U S A, 1998. 95(17): p. 10235-9.
    14.Li, H.S., X.Z. Xu, and C. Montell, Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron, 1999. 24(1): p. 261-73.
    15.Amaral, M.D. and L. Pozzo-Miller, TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci, 2007. 27(19): p. 5179-89.
    16.Minichiello, L., et al., Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 1999. 24(2): p. 401-14.
    17.Mu, J.S., et al., Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res, 1999. 835(2): p. 259-65.
    18.Ma, Y.L., et al., Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience, 1998. 82(4): p. 957-67.
    19.Mizuno, M., et al., Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci, 2000. 20(18): p. 7116-21.
    20.Rattiner, L.M., et al., Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci, 2004. 24(20): p. 4796-806.
    21.Koponen, E., et al., Transgenic mice overexpressing the full-length neurotrophin receptor trkB exhibit increased activation of the trkB-PLCgamma pathway, reduced anxiety, and facilitated learning. Mol Cell Neurosci, 2004. 26(1): p. 166-81.
    22.Fukuda, M. and K. Mikoshiba, A novel alternatively spliced variant of synaptotagmin VI lacking a transmembrane domain. Implications for distinct functions of the two isoforms. J Biol Chem, 1999. 274(44): p. 31428-34.
    23.Ullrich, B., et al., Functional properties of multiple synaptotagmins in brain. Neuron, 1994. 13(6): p. 1281-91.
    24.Chapman, E.R., Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol, 2002. 3(7): p. 498-508.
    25.Yoshihara, M. and E.S. Montana, The synaptotagmins: calcium sensors for vesicular trafficking. Neuroscientist, 2004. 10(6): p. 566-74.
    26.Dean, C., et al., Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nat Neurosci, 2009. 12(6): p. 767-76.
    27.Chen, G.H., et al., Age-related spatial cognitive impairment is correlated with increase of synaptotagmin 1 in dorsal hippocampus in SAMP8 mice. Neurobiol Aging, 2007. 28(4): p. 611-8.
    28.Ferguson, G.D., et al., Deficits in memory and motor performance in synaptotagmin IV mutant mice. Proc Natl Acad Sci U S A, 2000. 97(10): p. 5598-603.
    29.Ferguson, G.D., et al., Altered hippocampal short-term plasticity and associative memory in synaptotagmin IV (-/-) mice. Hippocampus, 2004. 14(8): p. 964-74.
    30.Hou, Q., et al., SNAP-25 in hippocampal CA1 region is involved in memory consolidation. Eur J Neurosci, 2004. 20(6): p. 1593-603.
    31.Malenka, R.C. and M.F. Bear, LTP and LTD: an embarrassment of riches. Neuron, 2004. 44(1): p. 5-21.
    32.Sheng, M. and C.C. Hoogenraad, The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem, 2007. 76: p. 823-47.
    33.Yuste, R. and T. Bonhoeffer, Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci, 2001. 24: p. 1071-89.
    34.Chklovskii, D.B., B.W. Mel, and K. Svoboda, Cortical rewiring and information storage. Nature, 2004. 431(7010): p. 782-8.
    35.Danzer, S.C., et al., Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB. Hippocampus, 2008. 18(7): p. 668-78.
    36.Ji, Y., et al., Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci, 2010. 13(3): p. 302-9.
    37.Hillman, C.H., K.I. Erickson, and A.F. Kramer, Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci, 2008. 9(1): p. 58-65.
    38.Cotman, C.W. and N.C. Berchtold, Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci, 2002. 25(6): p. 295-301.
    39.van Praag, H., Neurogenesis and exercise: past and future directions. Neuromolecular Med, 2008. 10(2): p. 128-40.
    40.Neeper, S.A., et al., Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res, 1996. 726(1-2): p. 49-56.
    41.Vaynman, S., Z. Ying, and F. Gomez-Pinilla, Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci, 2004. 20(10): p. 2580-90.
    42.Liu, Y.F., et al., Differential effects of treadmil running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol, 2009. 587(Pt 13): p. 3221-31.
    43.Herzog, A.G. and G.W. Van Hoesen, Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res, 1976. 115(1): p. 57-69.
    44.Jones, E.G. and T.P. Powell, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 1970. 93(4): p. 793-820.
    45.Mesulam, M.M., et al., Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res, 1977. 136(3): p. 393-414.
    46.LeDoux, J.E., et al., Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci, 1988. 8(7): p. 2517-29.
    47.Koo, J.W., J.S. Han, and J.J. Kim, Selective neurotoxic lesions of basolateral and central nuclei of the amygdala produce differential effects on fear conditioning. J Neurosci, 2004. 24(35): p. 7654-62.
    48.Medina, J.F., et al., Parallels between cerebellum- and amygdala-dependent conditioning. Nat Rev Neurosci, 2002. 3(2): p. 122-31.
    49.Fanselow, M.S., Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci, 1980. 15(4): p. 177-82.
    50.Stranahan, A.M., D. Khalil, and E. Gould, Social isolation delays the positive effects of running on adult neurogenesis. Nat Neurosci, 2006. 9(4): p. 526-33.
    51.Ou, L.C. and P.W. Gean, Transcriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory. Mol Pharmacol, 2007. 72(2): p. 350-8.
    52.Rizo, J. and C. Rosenmund, Synaptic vesicle fusion. Nat Struct Mol Biol, 2008. 15(7): p. 665-74.
    53.Wang, C.T., et al., Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature, 2003. 424(6951): p. 943-7.
    54.Adolfsen, B., et al., Synaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment. J Cell Biol, 2004. 166(2): p. 249-60.
    55.Steegmaier, M., et al., Three novel proteins of the syntaxin/SNAP-25 family. J Biol Chem, 1998. 273(51): p. 34171-9.
    56.Hess, D.T., et al., The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J Neurosci, 1992. 12(12): p. 4634-41.
    57.Geddes, J.W., et al., Lesions of hippocampal circuitry define synaptosomal-associated protein-25 (SNAP-25) as a novel presynaptic marker. Neuroscience, 1990. 38(2): p. 515-25.
    58.Ferguson, G.D., H.R. Herschman, and D.R. Storm, Reduced anxiety and depression-like behavior in synaptotagmin IV (-/-) mice. Neuropharmacology, 2004. 47(4): p. 604-11.
    59.Hou, Q.L., et al., SNAP-25 in hippocampal CA3 region is required for long-term memory formation. Biochem Biophys Res Commun, 2006. 347(4): p. 955-62.
    60.Liu, Y.F., et al., Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol Learn Mem, 2008. 90(1): p. 81-9.
    61.H.C., L., Effects of exercise onhippocampal synaptic plasticity in mice of different ages. Unpublished master dissertation, 2010.
    62.Nicolle, M.M., M. Gallagher, and M. McKinney, No loss of synaptic proteins in the hippocampus of aged, behaviorally impaired rats. Neurobiol Aging, 1999. 20(3): p. 343-8.
    63.Wong, R.O. and A. Ghosh, Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci, 2002. 3(10): p. 803-12.
    64.Carlisle, H.J. and M.B. Kennedy, Spine architecture and synaptic plasticity. Trends Neurosci, 2005. 28(4): p. 182-7.
    65.Barnabe-Heider, F. and F.D. Miller, Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci, 2003. 23(12): p. 5149-60.
    66.Rosenkranz, J.A., H. Moore, and A.A. Grace, The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci, 2003. 23(35): p. 11054-64.
    67.Berk, M.L. and J.A. Finkelstein, Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull, 1982. 8(5): p. 511-26.
    68.Rai, K.S., et al., Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract. Phytother Res, 2005. 19(7): p. 592-8.
    69.Y.C., H., Mechanism underlying treadmill exercise training-Induced enhancement of long-term potentiation in the rat hippocampal dentate gyrus and lateral amygdala. Unpublished doctoral dissertation, 2008.
    70.Parker, K.J., et al., Mild early life stress enhances prefrontal-dependent response inhibition in monkeys. Biol Psychiatry, 2005. 57(8): p. 848-55.
    71.Soya, H., et al., Threshold-like pattern of neuronal activation in the hypothalamus during treadmill running: establishment of a minimum running stress (MRS) rat model. Neurosci Res, 2007. 58(4): p. 341-8.
    72.Huang, A.M., et al., Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor. J Neural Transm, 2006. 113(7): p. 803-11.
    73.Kraemer, W.J., et al., Influence of exercise training on physiological and performance changes with weight loss in men. Med Sci Sports Exerc, 1999. 31(9): p. 1320-9.
    74.Hill, E.E., et al., Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Invest, 2008. 31(7): p. 587-91.
    75.Poeggel, G., et al., Juvenile emotional experience alters synaptic composition in the rodent cortex, hippocampus, and lateral amygdala. Proc Natl Acad Sci U S A, 2003. 100(26): p. 16137-42.

    下載圖示 校內:2012-08-11公開
    校外:2012-08-11公開
    QR CODE