簡易檢索 / 詳目顯示

研究生: 林紘毅
Lin, Hung-Yi
論文名稱: Sn/3.5Ag/0.75Cu銲錫受循環混合負載下含疲勞損傷之內涵時間黏塑性理論之研究
Endochronic Viscoplasticity with Fatigue Damage of Sn/3.5Ag/0.75Cu Solder Joints under Cyclic Mixed-Mode Loading
指導教授: 李超飛
Lee, Chau-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 內涵時間黏塑性理論Sn/3.5Ag/0.75Cu銲錫臨界損傷因子內涵時間累積量循環混合負載
外文關鍵詞: Critical values of damage factor, Cyclic mixed-mode loading, Sn/3.5Ag/0.75Cu solder joints, Endochronic cyclic viscoplasticity, Accumulation of intrinsic time
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文引用Ohguchi等人的實驗數據,以Lee and Shieh對60/40鉛錫合金之內涵時間黏塑性理論延伸到Sn/3.5Ag/0.75Cu銲錫材料。由實驗中不同應變率之應力-應變遲滯曲線,找出理論中所需之材料參數及材料函數,並建立材料應變敏感函數的數學式。
    Park等人使用循環混合負載模式對Sn/3.5Ag/0.75Cu銲錫進行測試,企圖以多方向的負載角度來測試錫球之循環受損程度。為了模擬不同負載角度的實驗結果,本文將理論中的內涵時間累積量改寫為與負載角度相關之函數,並決定立方對稱之材料參數及材料函數,模擬結果與實驗相當吻合。本文藉由前述之實驗,建立軸向及剪向的損傷因子與循環圈數之關係式,利用Lemaitre提出的應變等量原理,將損傷因子引入內涵時間黏塑性本構方程式中進行計算,模擬Sn/3.5Ag/0.75Cu銲錫受循環混合負載下之疲勞力-位移反應。於20%、50%及70%之負載下降率疲勞遲滯曲線中,本理論得到相當良好的模擬結果,並對此材料於不同循環負載角度下之臨界損傷因子值進行討論。

    In this paper, experimental data of Ohguchi et. al. are used to extend the Endochronic cyclic viscoplasticity of eutectic Tin/Lead(60/40) solder alloy by Lee and Shieh to a Lead-free material of Sn/3.5Ag/0.75Cu; Employed the experimental stress-strain hysteresis loops of different strain rates, material parameters and material functions in the theory can be determined and the functional form of strain rate sensitivity can also be established.
    Park et. al. used cyclic mixed-mode loading tests on Sn/3.5Ag/0.75Cu solder joints and investigated their degree of cyclic damage. In the Endochronic theory, the accumulation of intrinsic time is proposed first to depend on the loading angle and then cubic symmetric material parameters and material functions are determined. Through previous experiment, relationships of axial and shear damage factor with cycle number can be established. Using Lemaitre’s strain equivalence principle in the endochronic constitutive equation with damage factor, force-displacement response under cyclic mixed-mode loading can be computed. The hysteresis loops computed under 20%、50% and 70% load drop are in very good agreement with data. These allow the discussion in the critical values of damage factor under different loading angles.

    表目錄......................................................Ⅶ 圖目錄......................................................Ⅶ 符號說明....................................................Ⅹ 第一章 緒論..................................................1 1-1 前言................................................1 1-2 研究動機............................................2 1-3 文獻回顧............................................2 1-3-1 損傷力學文獻回顧....................................2 1-3-2 內涵時間黏塑性理論文獻回顧..........................5 第二章 損傷理論及內涵時間循環理論礎..........................7 2-1 損傷力學理論基礎....................................7 2-1-1 損傷下之有效應力觀念................................8 2-1-2 應變等量原理........................................9 2-1-3 損傷下之本構模式...................................10 2-1-4 疲勞損傷理論在循環負載下之應用.....................11 2-2 內涵時間循環黏塑性理論.............................12 2-2-1 增量式內涵時間循環黏塑性本構方程式.................15 2-2-2 增量式之計算流程...................................18 2-2-3 含等向性損傷之增量式內涵時間循環黏塑性本構方程式...21 第三章 Sn/3.5Ag/0.75Cu無鉛銲錫於內涵時間循環黏塑性理論之應 用.................................................22 3-1 實驗介紹...........................................22 3-2 定溫下Sn/3.5Ag/0.75Cu銲錫材料參數之決定............23 3-2-1 決定材料參數 ......................................24 3-2-2 決定材料參數 ......................................25 3-3 循環穩態下Sn/3.5Ag/0.75Cu銲錫材料函數之決定........27 3-4 增量式內涵時間循環黏塑性理論於Sn/3.5Ag/0.75Cu銲錫 之計算與討論.......................................31 第四章 Sn/3.5Ag/0.75Cu無鉛銲錫受循環混合負載下含疲勞損傷內 涵時間黏塑性理論之應用.............................35 4-1 實驗方法...........................................35 4-2 內涵時間黏塑性理論分析與計算.......................36 4-2-1 材料參數 、 及 之決定..............................37 4-2-2 材料函數 之決定....................................40 4-2-3 增量式內涵時間循環黏塑性本構方程式之計算...........40 4-2-4 混合模式循環負載之計算方法.........................43 4-3 Sn/3.5Ag/0.75Cu銲錫材料含疲勞損傷增量式內涵時間循 環黏塑性理論之計算.................................44 4-3-1 疲勞損傷下循環應力-應變之關係......................44 4-3-2 循環疲勞塑性應變範圍之討論.........................45 4-3-3 損傷因子之決定.....................................46 4-3-4 含疲勞損傷之增量式內涵時間循環本構方程式計算與結果.48 4-4 循環負載下疲勞損傷之討論...........................49 第五章 結語及未來研究方向...................................51 5-1 結語...............................................51 5-2 未來發展及研究方向.................................53 附表........................................................54 附圖........................................................56 參考文獻....................................................86

    [1] Lemaitre, J.,“A Course on Damage Mechanics”, Springer-Verlag, Germany, 1992.
    [2] Wen, S., Keer, M. L., Vaynman, S. and Lawson, L. R.,“A Constitutive Model for a High Lead Solder”, IEEE Transactions on Components and Packaging Technologies, Vol.25, No.1, pp.23-31, 2002.
    [3] Park, T. S. and Lee, S. B.,“Isothermal Law Cycle Fatigue Test of Sn/3.5Ag/0.75Cu and 63Sn/37Pb Solder Joint under Mixed-Mode Loading Cases”, Electronic Components and Technology Conference, pp.979-984, 2002.
    [4] 陳永昌,“63/37銲錫材料含疲勞損傷之內涵時間循環應力-應變行為”,碩士論文-國立成功大學工程科學系,2003。
    [5] Lehman, L. P., Kinyanjui, R. K., Wang, J., Xing, Y., Zavalij, L. and Borgesen, P.,“Microstructure and Damage Evolution in Sn-Ag-Cu Solder Joints”, Electronic Components and Technology Conference, pp.674-681, 2005.
    [6] Valanis, K.C.,“A Theory of Viscoplasticity Without a Yield Surface, Part I. General Theory”, Archives of Mechanics, pp.517-533, 1971.
    [7] Valanis, K.C., “Fundamental Consequences of a New Intrinsic Time Measure : Plasticity as a Limit of The Endochronic Theory”, Archives of Mechanics, Vol.32, pp.171-191, 1980.
    [8] Valanis, K.C. and Fan, J.,“A Numerical Algorithm for Endochronic Plasticity and Comparison With Experiment”, Computers and Structures, Vol.19, pp.717-729, 1984.
    [9] Lee, C. F.,“Numerical Method of The Incremental Endochronic Plasticity”, The Chinese Journal of Mechanics, Vol.8, No.4, pp.377-396, 1992.
    [10] Lee, C. F.,“Recent Finite Element Applications of The Incremental Endochronic Plasticity”, International Journal of Plasticity, Vol.11, No.7, pp.843-865, 1995.
    [11] Ohguchi, K., Sasaki, K., Ishibashi, M., and Hoshino, T.,“Plasticity-Creep Separation Method for Viscoplastic Deformation of Lead-Free Solders”, JSME International Journal, Series A, Vol.47, No.3, pp.371-379, 2004.
    [12] Lee, C. F. and Shieh, T. J.,“Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead(60Sn/40Pb) Solder Alloy”, will be Published in the J. of Mech., Sept., 2006.

    下載圖示 校內:2007-07-28公開
    校外:2007-07-28公開
    QR CODE