| 研究生: |
吳冠賢 Wu, Kuan-Hsien |
|---|---|
| 論文名稱: |
Cu2SnSe3和Cu2(Sn1-xInx)Se3奈米晶的熱溶合成及其性質研究 Solvothermal synthesis and properties of Cu2SnSe3 and Cu2(Sn1-xInx)Se3 nanocrystals |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 熱溶法 、高壓釜 、Cu2SnSe3奈米晶 、Cu2(Sn1-xInx)Se3奈米晶 |
| 外文關鍵詞: | solvothermal, autoclave, Cu2SnSe3 nanocrystals, Cu2(Sn1-xInx)Se3 nanocrystals |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉由兩種熱溶法來合成Cu2SnSe3(CTSe)及In摻雜CTSe(CTISe)奈米晶,並探討不同溶劑、前驅溶液之莫耳配比、溫度、時間等對合成之影響,同時探討CTSe與In摻雜CTSe奈米晶之光學及熱電性值。於高壓釜中放入含有聯胺及乙二胺溶劑的前驅溶液,可加速CTSe及CTISe之合成。於高壓釜中在190ºC分別持溫48及72小時可合成出純相之CTSe與In摻雜CTSe奈米晶。其原因為聯胺具有使硫系金屬化合物於反應中降低維度(dimentional reduction)之功能。由於In摻雜的影響,CTISe之反應速率比CTSe慢。以油胺為溶劑的前驅溶液,於氮氣中在210ºC分別持溫36及60小時可合成出純相之CTSe與In摻雜CTSe奈米晶,其也顯示In摻雜會使CTSe奈米晶之反應速率變慢。In摻雜CTSe奈米晶之拉曼光譜圖於180cm-1之峰值比CTSe奈米晶之峰值寬,其顯示In摻雜後會導致CTSe之化學鍵結改變。CTSe及In摻雜CTSe奈米晶藉由UV-vis光譜儀所測得之能隙約為1.08 eV,其顯示In摻雜對CTSe之能隙無顯著影響。
In the present study, the synthesis of Cu2SnSe3 (CTSe) and In-doped CTSe (CTISe) nanocrystals by two solvothermal processes as a function of the solvent, the molar ratio of precursors, temperature and time were explored. Meanwhile, the optical and thermoelectric properties of CTSe and CTISe nanocrystals were also studied. On synthesis in an autoclave, the addition of hydrazine to the ethylenediamine solvent speeded up the formation of pure CTSe and CTISe nanocrystals at 190˚C for 48 and 72 h, respectively. The reason can be explained in terms of the dimensional reduction of metal chalcogenides in the solvothermal reaction by hydrazine. However, as compared with the undoped CTSe nanocrystals, the formation rate of CTISe nanocrystals is significantly depressed due to In doping. On synthesis in N2 in the oleylamine solvent, the pure CTSe and CTISe nanocrystals could be acquired at 210˚C for 36 and 60 h, respectively, also revealing that In-doping depressed the growth rate of CTSe nanocrystals. The broader peak at 180 cm-1 in the Raman spectrum of CTISe nanocrystals as compared with that of CTSe nanocrystals indicates that the In-doping induces a change of the chemical bonding in the CTSe lattice. The bandgaps of CTSe and CTISe nanocrystals were determined to be about 1.08 eV by UV-vis spectroscopy, revealing that the In doping had no significant effect on the bandgap of the CTSe crystals.
[1] X. SHI, L. XI, J. FAN, W. ZHANG and L. CHEN, "Cu-Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure", Chemistry of Materials, 22 (22), 6029-6031, 2010.
[2] M. L. Liu, I. W. Chen, F. Q. Huang and L. D. Chen, "Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4", Advanced Materials, 21 (37), 3808-3812, 2009.
[3] X. Shi, F. Huang, M. Liu and L. Chen, "Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1-XInXSe4", Applied Physics Letters, 94 122103, 2009.
[4] S. Chen, X. Gong, A. Walsh and S. H. Wei, "Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI_ {2} compounds", Physical Review B, 79 (16), 165211, 2009.
[5] C. Sevik and T. Cagın, "Assessment of thermoelectric performance of Cu2ZnSnX4, X= S, Se, and Te", Applied Physics Letters, 95 (11), 112105-112105-3, 2009.
[6] C. Goodman, "The prediction of semiconducting properties in inorganic compounds", Journal of Physics and Chemistry of Solids, 6 (4), 305-314, 1958.
[7] T. J. Seebeck, "Magnetic polarization of metals and minerals", Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 265 1823.
[8] T. J. Seebeck, "Methode, Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen", Schweigger's J. Phy., 46 101, 1826.
[9] D. M. Rowe, "CRC handbook of thermoelectrics", CRC Press, Boca Raton, USA, 1995.
[10] J. Peltier, "Nouvelles experiences sur la caloricite des courans electrique", Annales de Chimie et de Physique, 56 371, 1834.
[11] W. Thomson, "An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments on steam", Transactions of the Edinburgh Royal Society, 16 541-574, 1849.
[12] W. Thomson, "On a Mechanical Theory of Thermo-Electric Currents", Proceeding Of The Royal Society Of Edinburgh, 91 1851.
[13] W. Thomson, "Account of researches in thermo-electricity", Proceedings of the Royal Society of London, 7 49-58, 1854.
[14] W. Thomson, "On the electro-dynamic qualities of metals:--effects of magnetization on the electric conductivity of nickel and of iron", Proceedings of the Royal Society of London, 8 546-550, 1856.
[15] W. Thomson, "The Bakerian Lecture.—On the Electro-dynamic Qualities of Metals", Philosophical Transactions of the Royal Society of London, 146 (3), 649-751, 1856.
[16] G. S. Nolas, J. W. Sharp and H. J., "Goldsmid,Thermoelectrics: Basic Principles and New Materials Developments", Springer-Verlag, Heidelberg, 2001.
[17] W. F. Roeser, "Thermoelectric thermometry", Journal of applied physics, 11 (6), 388-407, 1940.
[18] H. B. Callen, "The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects", Physical Review, 73 (11), 1349, 1948.
[19] C. A. Domenicali, "Irreversible thermodynamics of thermoelectricity", Reviews of Modern Physics, 26 (2), 237, 1954.
[20] P. W. Bridgman, "The thermodynamics of electrical phenomena in metals and a condensed collection of thermodynamic formulas", Dover Publications, 1961.
[21] D. M. Rowe, "Thermoelectrics handbook: Macro to nano", CRC press, New York, 2006.
[22] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. Polychroniadis and M. G. Kanatzidis, "Cubic AgPbmSbTe2+ m: Bulk thermoelectric materials with high figure of merit", Science, 303 (5659), 818-821, 2004.
[23] E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. Polychroniadis and M. G. Kanatzidis, "Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPb m SbTe2+ m. The Myth of Solid Solutions", Journal of the American Chemical Society, 127 (25), 9177-9190, 2005.
[24] K. Uehara and J. S. Tse, "Calculations of transport properties with the linearized augmented plane-wave method", Physical Review B, 61 (3), 1639, 2000.
[25] J. Sharp, E. Jones, R. Williams, P. Martin and B. Sales, "Thermoelectric properties of CoSb3 and related alloys", Journal of applied physics, 78 (2), 1013-1018, 1995.
[26] J. Sofo and G. Mahan, "Electronic structure of CoSb3: A narrow-band-gap semiconductor", Physical Review B, 58 (23), 15620, 1998.
[27] D. T. Morelli, T. Caillat, J. P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen and C. Uher, "Low-temperature transport properties of p-type CoSb_{3}", Physical Review B, 51 (15), 9622-9628, 1995.
[28] Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka, "Thermoelectric properties of CoSb3", Journal of Alloys and Compounds, 315 (1), 193-197, 2001.
[29] K. Kishimoto, M. Tsukamoto and T. Koyanagi, "Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering", Journal of Applied Physics, 92 (9), 5331, 2002.
[30] T. Harman, P. Taylor, M. Walsh and B. LaForge, "Quantum dot superlattice thermoelectric materials and devices", Science, 297 (5590), 2229-2232, 2002.
[31] J. Caylor, K. Coonley, J. Stuart, T. Colpitts and R. Venkatasubramanian, "Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity", Applied Physics Letters, 87 023105, 2005.
[32] M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin and T. Koga, "Low-dimensional thermoelectric materials", Physics of the Solid State, 41 (5), 679-682, 1999.
[33] G. Marcano, C. Rincón, L. De Chalbaud, D. Bracho and G. S. Pérez, "Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3", Journal of applied physics, 90 1847, 2001.
[34] L. Palatnik, V. Koshkin and L. Galchinetskil, "V. 1. KOLESNIKOV and YU. F. KOMNIK", Fiz. Tverd. Tela, 4 1430, 1962.
[35] J. Rivet, J. Flahaut and T. Laruelle, "About a Group of Ternary Compounds with Tetrahedral Structure", Comptes Rendus de l'Académie des Sciences, 257 (1), 161-164, 1963.
[36] B. Sharma, R. Ayyar and H. Singh, "Stability of the Tetrahedral Phase in the AI2BIVCVI3 Group of Compounds", physica status solidi (a), 40 (2), 691-696, 1977.
[37] J. Rivet, "Investigation of Some Ternary Sulphides, Selenides and Tellurides of Copper with Elements of IVb Groupe", Ann. Chim.(Paris), 10 (5-6), 243-270, 1965.
[38] G. Marcano, L. De Chalbaud, C. Rincón and G. Sánchez Pérez, "Crystal growth and structure of the semiconductor Cu2SnSe3", Materials Letters, 53 (3), 151-154, 2002.
[39] G. Delgado, A. Mora, G. Marcano and C. Rincón, "Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data", Materials research bulletin, 38 (15), 1949-1955, 2003.
[40] H. M. Rietveld, "A profile refinement method for nuclear and magnetic structures", Journal of Applied Crystallography, 2 (2), 65-71, 1969.
[41] A. Boultif and D. Louër, "Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method", Journal of Applied Crystallography, 24 (6), 987-993, 1991.
[42] M. E. Norako, M. J. Greaney and R. L. Brutchey, "Synthesis and Characterization of Wurtzite Phase Copper Tin Selenide Nanocrystals", Journal of the American Chemical Society, 134 23-26, 2012.
[43] E. Parthé, J. Westbrook and R. Fleischer, "Intermetallic Compounds: Principles and Applications", Wiley, Chichester, UK, 343-362, 1995.
[44] G. S. Babu, Y. Kumar, Y. Reddy and V. S. Raja, "Growth and characterization of Cu2SnSe3 thin films", Materials chemistry and physics, 96 (2), 442-446, 2006.
[45] D.-H. Kuo, W.-D. Haung, Y.-S. Huang, J.-D. Wu and Y.-J. Lin, "Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2", Thin solid films, 518 (24), 7218-7221, 2010.
[46] D.-H. Kuo, W.-D. Haung, Y.-S. Huang, J.-D. Wu and Y.-J. Lin, "Effect of post-deposition annealing on the performance of D.C. sputtered Cu2SnSe3 thin films", Surface and Coatings Technology, 205, Supplement 1 (0), S196-S200, 2010.
[47] M. A. S. Mohd Yunos, Z. A. Talib, W. M. Mat Yunus, J. Liew Ying Chyi and W. S. Paulus, "X-RAY DIFFRACTION ANALYSIS OF THERMALLY EVAPORATED COPPER TIN SELENIDE THIN FILMS AT DIFFERENT ANNEALING TEMPERATURE", Jurnal Sains Nuklear Malaysia, 23 (2), pp. 46-52, 2011.
[48] J. Jeong, H. Chung, Y. C. Ju, J. W. Moon, J. S. Roh, S. Yoon, Y. R. Do and W. Kim, "Colloidal synthesis of Cu2SnSe3 nanocrystals", Materials Letters, 64 (19), 2043-2045, 2010.
[49] S. Bai, Y. Pei, L. Chen, W. Zhang, X. Zhao and J. Yang, "Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12", Acta Materialia, 57 (11), 3135-3139, 2009.
[50] X. Shi, J. Yang, S. Bai, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen and W. Wong‐Ng, "On the Design of High‐Efficiency Thermoelectric Clathrates through a Systematic Cross‐Substitution of Framework Elements", Advanced Functional Materials, 20 (5), 755-763, 2010.
[51] L. Xi, J. Yang, W. Zhang and L. Chen, "Anomalous Dual-Element Filling in Partially Filled Skutterudites", Journal of the American Chemical Society, 131 (15), 5560-5563, 2009.
[52] W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu and X. Tang, "Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler", Journal of the American Chemical Society, 131 (10), 3713-3720, 2009.
[53] G. A. Slack, "Thermal Conductivity of II-VI Compounds and Phonon Scattering by Fe^{2+} Impurities", Physical Review B, 6 (10), 3791, 1972.
[54] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'quinn, "Thin-Film thermoelectric devices with high room-temperature figures of merit", Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 120, 2010.
[55] C. Keffer, T. M. Hayes and A. Bienenstock, "PbTe Debye-Waller Factors and Band-Gap Temperature Dependence", Physical Review Letters, 21 (25), 1676-1678, 1968.
[56] P. Larson, S. Mahanti and M. Kanatzidis, "Electronic structure and transport of Bi_ {2} Te_ {3} and BaBiTe_ {3}", Physical Review B, 61 (12), 8162, 2000.
[57] X. J. Wang, M. B. Tang, J. T. Zhao, H. H. Chen and X. X. Yang, "Thermoelectric properties and electronic structure of Zintl compound BaZn2Sb2", Applied Physics Letters, 90 (23), 232107-232107-3, 2007.
[58] H. Goldsmid and J. Sharp, "Estimation of the thermal band gap of a semiconductor from Seebeck measurements", Journal of electronic materials, 28 (7), 869-872, 1999.
[59] K. Hirono, M. Kono and T. Irie, "On the Electrical and Thermal Properties of the Ternary Chalcogenides A2IBIVX3, AIBVX2 and A3IBVX4 (AI= Cu; BIV= Ge, Sn; BV= Sb; X= S, Se, Te). I. Thermoelectric Properties at Room Temperature", Japanese Journal of Applied Physics, 7 54, 1968.
[60] Y. F. Du, J. Q. Fan, W. H. Zhou, Z. Zhou, J. Jiao and S. Wu, "One-Step Synthesis of Stoichiometric Cu2ZnSnSe4 as Counter Electrode for Dye-Sensitized Solar Cells", ACS Applied Materials & Interfaces, 4 1796-1802, 2012.
[61] 汪建民等人, "材料分析", 中國材料科學學會, 1998.
[62] J. C. Vickerman and I. S. Gilmore, "Surface analysis: the principal techniques", Wiley Online Library, 2009.
[63] R. L. Weiher and R. P. Ley, "Optical Properties of Indium Oxide", Journal of Applied Physics, 37 (1), 299-302, 1966.
[64] 王孟亮, "拉曼光譜學及其在生化上的應用", 1983.
[65] C. Raman, "A change of wave-length in light scattering", Nature, 121 (3051), 619-619, 1928.
[66] C. S. Lopes, C. E. Foerster, F. C. Serbena, P. R. Júnior, A. R. Jurelo, J. L. P. Júnior, P. Pureur and A. L. Chinelatto, "Raman spectroscopy of highly oriented FeSe0. 5Te0. 5 superconductor", Superconductor Science and Technology, 25 025014, 2012.
[67] X. Chen, X. Wang, C. An, J. Liu and Y. Qian, "Preparation and characterization of ternary Cu–Sn–E (E= S, Se) semiconductor nanocrystallites via a solvothermal element reaction route", Journal of Crystal Growth, 256 (3), 368-376, 2003.
[68] G. Marcano, C. Rincón, S. López, G. Sánchez Pérez, J. Herrera-Pérez, J. Mendoza-Alvarez and P. Rodríguez, "Raman spectrum of monoclinic semiconductor Cu2SnSe3", Solid State Communications, 151 (1), 84-86, 2011.
[69] B. Minceva-Sukarova, M. Najdoski, I. Grozdanov and C. J. Chunnilall, "Raman spectra of thin solid films of some metal sulfides", Journal of Molecular Structure, 410–411 (0), 267-270, 1997.
[70] M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok and E. Mellikov, "Cu2Zn1–xCdxSn(Se1–ySy)4 solid solutions as absorber materials for solar cells", physica status solidi (a), 205 (1), 167-170, 2008.
[71] C. Wagner, W. Riggs, L. Davis, J. Moulder and G. Muilenberg, "Handbook of XPS", 1979.
[72] L. Partain, R. Schneider, L. Donaghey and P. Mcleod, "Surface chemistry of CuxS and CuxS/CdS determined from x‐ray photoelectron spectroscopy", Journal of applied physics, 57 (11), 5056-5065, 1985.
[73] R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32 (5), 751-767, 1976.
[74] N. Amiri and A. Postnikov, "Secondary phase Cu2SnSe3 vs. kesterite Cu2ZnSnSe4: similarities and differences in lattice vibration modes", Arxiv preprint arXiv:1204.6473, 2012.
[75] F. Hergert and R. Hock, "Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X", Thin solid films, 515 (15), 5953-5956, 2007.
[76] R. A. Wibowo, W. H. Jung, M. H. Al-Faruqi, I. Amal and K. H. Kim, "Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders", Materials chemistry and physics, 124 (2-3), 1006-1010, 2010.
[77] M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja and E. Mellikov, "Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy", Thin solid films, 2011.
[78] F. Hergert and R. Hock, "Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X=S,Se) starting from binary chalcogenides", Thin solid films, 515 (15), 5953-5956, 2007.
[79] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline and A. G. Schrott, "A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device", Advanced Materials, 20 (19), 3657-3662, 2008.
[80] D. B. Mitzi, "Solution processing of chalcogenide semiconductors via dimensional reduction", Advanced Materials, 21 (31), 3141-3158, 2009.
[81] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac and A. G. Schrott, "Hydrazine-based deposition route for device-quality CIGS films", Thin solid films, 517 (7), 2158-2162, 2009.
[82] T. K. Todorov, K. B. Reuter and D. B. Mitzi, "High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber", Advanced Materials, 22 (20), E156-E159, 2010.
[83] E. G. Tulsky and J. R. Long, "Dimensional Reduction: A Practical Formalism for Manipulating Solid Structures", Chemistry of Materials, 13 (4), 1149-1166, 2001.
[84] A. Myers Kelley, "Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution†", The Journal of Physical Chemistry A, 112 (47), 11975-11991, 2008.