簡易檢索 / 詳目顯示

研究生: 吳冠賢
Wu, Kuan-Hsien
論文名稱: Cu2SnSe3和Cu2(Sn1-xInx)Se3奈米晶的熱溶合成及其性質研究
Solvothermal synthesis and properties of Cu2SnSe3 and Cu2(Sn1-xInx)Se3 nanocrystals
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 117
中文關鍵詞: 熱溶法高壓釜Cu2SnSe3奈米晶Cu2(Sn1-xInx)Se3奈米晶
外文關鍵詞: solvothermal, autoclave, Cu2SnSe3 nanocrystals, Cu2(Sn1-xInx)Se3 nanocrystals
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由兩種熱溶法來合成Cu2SnSe3(CTSe)及In摻雜CTSe(CTISe)奈米晶,並探討不同溶劑、前驅溶液之莫耳配比、溫度、時間等對合成之影響,同時探討CTSe與In摻雜CTSe奈米晶之光學及熱電性值。於高壓釜中放入含有聯胺及乙二胺溶劑的前驅溶液,可加速CTSe及CTISe之合成。於高壓釜中在190ºC分別持溫48及72小時可合成出純相之CTSe與In摻雜CTSe奈米晶。其原因為聯胺具有使硫系金屬化合物於反應中降低維度(dimentional reduction)之功能。由於In摻雜的影響,CTISe之反應速率比CTSe慢。以油胺為溶劑的前驅溶液,於氮氣中在210ºC分別持溫36及60小時可合成出純相之CTSe與In摻雜CTSe奈米晶,其也顯示In摻雜會使CTSe奈米晶之反應速率變慢。In摻雜CTSe奈米晶之拉曼光譜圖於180cm-1之峰值比CTSe奈米晶之峰值寬,其顯示In摻雜後會導致CTSe之化學鍵結改變。CTSe及In摻雜CTSe奈米晶藉由UV-vis光譜儀所測得之能隙約為1.08 eV,其顯示In摻雜對CTSe之能隙無顯著影響。

    In the present study, the synthesis of Cu2SnSe3 (CTSe) and In-doped CTSe (CTISe) nanocrystals by two solvothermal processes as a function of the solvent, the molar ratio of precursors, temperature and time were explored. Meanwhile, the optical and thermoelectric properties of CTSe and CTISe nanocrystals were also studied. On synthesis in an autoclave, the addition of hydrazine to the ethylenediamine solvent speeded up the formation of pure CTSe and CTISe nanocrystals at 190˚C for 48 and 72 h, respectively. The reason can be explained in terms of the dimensional reduction of metal chalcogenides in the solvothermal reaction by hydrazine. However, as compared with the undoped CTSe nanocrystals, the formation rate of CTISe nanocrystals is significantly depressed due to In doping. On synthesis in N2 in the oleylamine solvent, the pure CTSe and CTISe nanocrystals could be acquired at 210˚C for 36 and 60 h, respectively, also revealing that In-doping depressed the growth rate of CTSe nanocrystals. The broader peak at 180 cm-1 in the Raman spectrum of CTISe nanocrystals as compared with that of CTSe nanocrystals indicates that the In-doping induces a change of the chemical bonding in the CTSe lattice. The bandgaps of CTSe and CTISe nanocrystals were determined to be about 1.08 eV by UV-vis spectroscopy, revealing that the In doping had no significant effect on the bandgap of the CTSe crystals.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 第一章 引言 1 第二章 理論基礎與文獻回顧 3 2.1 熱電材料 3 2.1.1 Seebeck效應[7-9] 3 2.1.2 Peltier效應[10] 4 2.1.3 Thomson效應[11-15] 4 2.1.4 熱電優值[9, 16, 21] 5 2.1.5 熱電優值的發展歷史趨勢[21] 6 2.2 熱電材料的介紹 6 2.2.1 熱電材料物理特性需求 6 2.2.2 熱電材類分類 7 2.2.3 提升材料熱電優值的方法 8 2.3 CTSe文獻回顧 10 2.3.1 CTSe之結構 11 2.3.2 CTSe之熱電性質[1] 13 2.4 研究動機 16 第三章 實驗步驟與方法 19 3.1 以濕式化學法在高壓容器合成CTSe和CTISe粉末 19 3.1.1 合成CTSe粉末 19 3.1.2 合成CTISe粉末 20 3.2 以濕式化學法在氮氣合成CTSe和CTISe粉末 20 3.2.1 合成CTSe粉末 20 3.2.2 合成CTISe粉末 21 3.3 材料特性分析 21 3.3.1 X光繞射儀[61] 21 3.3.2 掃描式電子顯微鏡[61] 23 3.3.3 穿透式電子顯微鏡[61] 24 3.3.4 X光能量散佈分析儀[61] 25 3.3.5 化學分析電子光譜儀[62] 26 3.3.6 紫外/可見光光譜儀[63] 28 3.3.7 拉曼光譜儀[64-65] 29 3.3.8熱電性值分析 30 第四章 結果與討論 33 4.1 熱溶法在高壓釜(autoclave)中合成CTSe及CTISe奈米晶 33 4.1.1 添加聯胺對合成CTSe奈米晶之影響 33 4.1.2 添加聯胺對合成CTISe奈米晶之影響 35 4.1.3 聯胺促進CTSe及CTISe奈米晶合成之機制 38 4.2 在高壓釜中合成CTSe及CTISe奈米晶之特性分析 40 4.2.1 CTSe及CTISe之微結構及化學組成 40 4.2.2 CTSe及CTISe之紫外-可見光譜分析 41 4.3 熱溶法在氮氣中合成CTSe及CTISe奈米晶 42 4.3.1 合成CTSe奈米晶 42 4.3.2 合成CTISe奈米晶 44 4.4 在氮氣中合成CTSe及CTISe奈米晶之特性分析 46 4.4.1 CTSe及CTISe之微結構及成份分析 46 4.4.2 CTSe及CTISe之紫外-可見光譜分析 48 4.5 真空退火 48 4.5.1 用高壓釜製備CTSe及CTISe奈米晶之真空退火 48 第五章 結論 50 參考資料 52 附錄 111 JCPDS Cards No. 01-086-1239 (CuSe) 111 JCPDS Cards No. 01-072-8034 (Cu2SnSe3) 112 JCPDS Cards No. 01-072-7165 (Cu2Se) 114 JCPDS Cards No. 00-006-0362 (Se) 115 JCPDS Cards No. 00-048-1224 (SnSe) 116 JCPDS Cards No. 01-072-7165 (Cu2SnSe4) 117 圖目錄 圖1 Seebeck效應示意圖[9] 59 圖2 Peltier效應示意圖[9] 59 圖3 Thomson效應示意圖[9] 60 圖4 分析封閉熱電迴路中之熱現象[9] 60 圖5(a) 熱電優值的發展歷史趨勢[21] 61 圖5(b) 熱電優值的發展歷史趨勢[21] 61 圖6 電導率、Seebeck係數、功率因子和熱傳導率隨載子濃度變化的曲線圖[21] 62 圖7 各類材料熱電優值(Z)隨工作溫度變化圖[21] 62 圖8 理想的熱電材料其電子能帶結構[21] 63 圖9 載子密度過晶界能障前後變化之示意圖[29] 63 圖10 晶界能障對不同能量載子散射之示意圖 64 圖11 Cu2SnSe3之晶格結構[39] 64 圖12 skutterudite及filled skutterudite之晶格結構[28] 65 圖13 Cu2SnSe3在晶體面(100)面之上層價帶(大於0.3eV)部分載子密度分佈圖。[1] 65 圖14 Cu2ZnSnSe4在(100)面之上層價帶(大於0.3eV)部分載子密度分佈圖。[1] 66 圖15 各比例CTISe之XRD圖。[1] 66 圖16 Cu2Sn0.9275In0.0625Se3在(100)面之上層價帶(大於0.3eV)部分載子密度分佈圖。[1] 67 圖17 以熱溶法於高壓容器中合成CTSe及CTISe奈米晶之流程圖 68 圖18 以熱溶法於氮氣中合成CTSe和CTISe粉末之流程圖 69 圖19 高壓釜不鏽鋼外殼及內襯之照片 70 圖20 高壓釜鎖緊後之照片 71 圖21 架設氮氣後之示意圖 71 圖22 布拉格定律示意圖 72 圖23 不同光子散射過程躍遷能階圖[84] 72 圖24 Seebeck量測示意圖 73 圖25 四點探針量測示意圖 73 圖26 熱傳導量試片裝置意圖 73 圖27 不加聯胺於高壓釜中在190ºC持溫48小時合成CTSe之XRD及Raman圖 74 圖28 添加聯胺於高壓釜中在190ºC分別持溫24、36及48小時合成CTSe之XRD及Raman光譜圖 75 圖29 於高壓釜中合成純相之CTSe粉末的ESCA分析圖。 76 圖30 不加聯胺於高壓釜中在190ºC持溫72小時合成CTISe之XRD及Raman圖 77 圖31 添加聯胺於高壓釜中在190ºC持溫48、60及72小時合成CTISe之XRD及Raman光譜圖 78 圖32 於高壓釜中合成純相之CTISe之ESCA分析圖 79 圖33 於高壓釜中合成純相之CTSe及CTISe以矽基板校正後的XRD圖 80 圖34 維度隨MX3與AbX結合量增加而降低之示意圖[83] 81 圖35 有添加聯胺於高壓釜中以190ºC持溫48小時所得CTSe粉末之SEM照片 82 圖36 無添加聯胺於高壓釜中以190ºC持溫48小時所得CTSe之SEM照片 83 圖37 有添加聯胺於高壓釜中以190ºC持溫72小時所得CTISe粉末之SEM照片 84 圖38 無添加聯胺於高壓釜中以190ºC持溫48小時所得CTISe粉末之SEM照片 85 圖39 於高壓釜中合成純相之CTSe粉末及CTISe粉末之SEM/EDS能譜分析 86 圖40 於高壓釜中合成純相之CTISe粉末之FE-SEM/EDS能譜分析 86 圖41 於高壓釜中合成CTSe奈米晶之TEM影像分析圖 87 圖42 於高壓釜中合成CTISe奈米晶之TEM影像分析圖 87 圖43 於高壓釜中合成CTSe米晶之繞射圖及其d值。 88 圖44 於高壓釜中合成CTISe奈米晶之TEM繞射圖及其d值。 89 圖45 於高壓釜中合成CTSe粉末及CTISe粉末之SEM/EDS能譜分析 90 圖46 配比Cu2SnSe2於氮氣中在170ºC反應24小時合成CTSe之XRD圖及SEM/EDS分析結果。 90 圖47 配比Cu1.7SnSe2於氮氣中分別在在190、200及210ºC反應24小時合成CTSe之XRD圖及Raman光譜圖。 91 圖48 配比Cu1.7SnSe2於氮氣中分別在190、200及210ºC反應24小時合成粉末之SEM/EDS成份分析結果。 92 圖49 配比Cu1.7SnSe2於氮氣中在210ºC反應36及48小時合成CTSe之XRD圖及Raman光譜圖。 93 圖50 配比Cu1.5SnSe1.8於氮氣中在210ºC反應36小時合成CTSe之XRD圖及Raman光譜圖。 94 圖51 配比Cu1.7Sn0.8In0.2Se2於氮氣中在210ºC,分別反應36、48及60小時合成CTISe之XRD圖及Raman光譜圖。 95 圖52 配比Cu1.5Sn0.8In0.2Se1.8於氮氣中在210ºC,分別反應36、48及60小時合成CTISe之XRD圖及Raman光譜圖。 96 圖53 於氮氣中合成CTSe及CTISe以矽基板校正後之XRD圖 97 圖54 於氮氣中合成CTSe粉末之SEM照片。 98 圖55 於氮氣中CTISe粉末之SEM照片。 99 圖56 配比Cu1.7SnSe2於氮氣中合成CTSe及CTISe粉末之SEM/EDS能譜分析 100 圖57 配比Cu1.7SnSe2於氮氣中合成CTSe及CTISe奈米片狀之SEM/EDS能譜分析 100 圖58 於氮氣中配比Cu1.5SnSe1.8合成CTSe及CTISe粉末之SEM/EDS能譜分析 101 圖59 於氮氣中配比Cu1.5SnSe1.8合成CTSe及CTISe粉末奈米片狀之SEM/EDS能譜分析 101 圖60 於氮氣中CTSe奈米晶之TEM影像分析圖 102 圖61 於氮氣中CTISe奈米晶之TEM影像分析圖 102 圖62 於氮氣中CTSe奈米晶之繞射圖及其d值。 103 圖63 於氮氣中CTSe奈米晶之繞射圖及其d值。 104 圖64 於氮氣中CTISe奈米晶之繞射圖及其d值。 105 圖65 於氮氣中合成CTSe及CTISe之UV-vis光譜圖。 106 圖66 於高壓釜中製備CTSe及CTISe真空退火之XRD及Raman圖 107 圖67 於高壓釜中製備CTSe真空退火之SEM照片 108 圖68 熱溶法於高壓釜中製備CTISe真空退火之SEM照片 109 圖69 於高壓釜中製備CTSe及CTISe真空退火之SEM/EDS能譜分析 110

    [1] X. SHI, L. XI, J. FAN, W. ZHANG and L. CHEN, "Cu-Se Bond Network and Thermoelectric Compounds with Complex Diamondlike Structure", Chemistry of Materials, 22 (22), 6029-6031, 2010.
    [2] M. L. Liu, I. W. Chen, F. Q. Huang and L. D. Chen, "Improved Thermoelectric Properties of Cu‐Doped Quaternary Chalcogenides of Cu2CdSnSe4", Advanced Materials, 21 (37), 3808-3812, 2009.
    [3] X. Shi, F. Huang, M. Liu and L. Chen, "Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1-XInXSe4", Applied Physics Letters, 94 122103, 2009.
    [4] S. Chen, X. Gong, A. Walsh and S. H. Wei, "Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI_ {2} compounds", Physical Review B, 79 (16), 165211, 2009.
    [5] C. Sevik and T. Cagın, "Assessment of thermoelectric performance of Cu2ZnSnX4, X= S, Se, and Te", Applied Physics Letters, 95 (11), 112105-112105-3, 2009.
    [6] C. Goodman, "The prediction of semiconducting properties in inorganic compounds", Journal of Physics and Chemistry of Solids, 6 (4), 305-314, 1958.
    [7] T. J. Seebeck, "Magnetic polarization of metals and minerals", Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 265 1823.
    [8] T. J. Seebeck, "Methode, Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen", Schweigger's J. Phy., 46 101, 1826.
    [9] D. M. Rowe, "CRC handbook of thermoelectrics", CRC Press, Boca Raton, USA, 1995.
    [10] J. Peltier, "Nouvelles experiences sur la caloricite des courans electrique", Annales de Chimie et de Physique, 56 371, 1834.
    [11] W. Thomson, "An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments on steam", Transactions of the Edinburgh Royal Society, 16 541-574, 1849.
    [12] W. Thomson, "On a Mechanical Theory of Thermo-Electric Currents", Proceeding Of The Royal Society Of Edinburgh, 91 1851.
    [13] W. Thomson, "Account of researches in thermo-electricity", Proceedings of the Royal Society of London, 7 49-58, 1854.
    [14] W. Thomson, "On the electro-dynamic qualities of metals:--effects of magnetization on the electric conductivity of nickel and of iron", Proceedings of the Royal Society of London, 8 546-550, 1856.
    [15] W. Thomson, "The Bakerian Lecture.—On the Electro-dynamic Qualities of Metals", Philosophical Transactions of the Royal Society of London, 146 (3), 649-751, 1856.
    [16] G. S. Nolas, J. W. Sharp and H. J., "Goldsmid,Thermoelectrics: Basic Principles and New Materials Developments", Springer-Verlag, Heidelberg, 2001.
    [17] W. F. Roeser, "Thermoelectric thermometry", Journal of applied physics, 11 (6), 388-407, 1940.
    [18] H. B. Callen, "The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects", Physical Review, 73 (11), 1349, 1948.
    [19] C. A. Domenicali, "Irreversible thermodynamics of thermoelectricity", Reviews of Modern Physics, 26 (2), 237, 1954.
    [20] P. W. Bridgman, "The thermodynamics of electrical phenomena in metals and a condensed collection of thermodynamic formulas", Dover Publications, 1961.
    [21] D. M. Rowe, "Thermoelectrics handbook: Macro to nano", CRC press, New York, 2006.
    [22] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. Polychroniadis and M. G. Kanatzidis, "Cubic AgPbmSbTe2+ m: Bulk thermoelectric materials with high figure of merit", Science, 303 (5659), 818-821, 2004.
    [23] E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. Polychroniadis and M. G. Kanatzidis, "Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPb m SbTe2+ m. The Myth of Solid Solutions", Journal of the American Chemical Society, 127 (25), 9177-9190, 2005.
    [24] K. Uehara and J. S. Tse, "Calculations of transport properties with the linearized augmented plane-wave method", Physical Review B, 61 (3), 1639, 2000.
    [25] J. Sharp, E. Jones, R. Williams, P. Martin and B. Sales, "Thermoelectric properties of CoSb3 and related alloys", Journal of applied physics, 78 (2), 1013-1018, 1995.
    [26] J. Sofo and G. Mahan, "Electronic structure of CoSb3: A narrow-band-gap semiconductor", Physical Review B, 58 (23), 15620, 1998.
    [27] D. T. Morelli, T. Caillat, J. P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen and C. Uher, "Low-temperature transport properties of p-type CoSb_{3}", Physical Review B, 51 (15), 9622-9628, 1995.
    [28] Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka, "Thermoelectric properties of CoSb3", Journal of Alloys and Compounds, 315 (1), 193-197, 2001.
    [29] K. Kishimoto, M. Tsukamoto and T. Koyanagi, "Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering", Journal of Applied Physics, 92 (9), 5331, 2002.
    [30] T. Harman, P. Taylor, M. Walsh and B. LaForge, "Quantum dot superlattice thermoelectric materials and devices", Science, 297 (5590), 2229-2232, 2002.
    [31] J. Caylor, K. Coonley, J. Stuart, T. Colpitts and R. Venkatasubramanian, "Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity", Applied Physics Letters, 87 023105, 2005.
    [32] M. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. Cronin and T. Koga, "Low-dimensional thermoelectric materials", Physics of the Solid State, 41 (5), 679-682, 1999.
    [33] G. Marcano, C. Rincón, L. De Chalbaud, D. Bracho and G. S. Pérez, "Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3", Journal of applied physics, 90 1847, 2001.
    [34] L. Palatnik, V. Koshkin and L. Galchinetskil, "V. 1. KOLESNIKOV and YU. F. KOMNIK", Fiz. Tverd. Tela, 4 1430, 1962.
    [35] J. Rivet, J. Flahaut and T. Laruelle, "About a Group of Ternary Compounds with Tetrahedral Structure", Comptes Rendus de l'Académie des Sciences, 257 (1), 161-164, 1963.
    [36] B. Sharma, R. Ayyar and H. Singh, "Stability of the Tetrahedral Phase in the AI2BIVCVI3 Group of Compounds", physica status solidi (a), 40 (2), 691-696, 1977.
    [37] J. Rivet, "Investigation of Some Ternary Sulphides, Selenides and Tellurides of Copper with Elements of IVb Groupe", Ann. Chim.(Paris), 10 (5-6), 243-270, 1965.
    [38] G. Marcano, L. De Chalbaud, C. Rincón and G. Sánchez Pérez, "Crystal growth and structure of the semiconductor Cu2SnSe3", Materials Letters, 53 (3), 151-154, 2002.
    [39] G. Delgado, A. Mora, G. Marcano and C. Rincón, "Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data", Materials research bulletin, 38 (15), 1949-1955, 2003.
    [40] H. M. Rietveld, "A profile refinement method for nuclear and magnetic structures", Journal of Applied Crystallography, 2 (2), 65-71, 1969.
    [41] A. Boultif and D. Louër, "Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method", Journal of Applied Crystallography, 24 (6), 987-993, 1991.
    [42] M. E. Norako, M. J. Greaney and R. L. Brutchey, "Synthesis and Characterization of Wurtzite Phase Copper Tin Selenide Nanocrystals", Journal of the American Chemical Society, 134 23-26, 2012.
    [43] E. Parthé, J. Westbrook and R. Fleischer, "Intermetallic Compounds: Principles and Applications", Wiley, Chichester, UK, 343-362, 1995.
    [44] G. S. Babu, Y. Kumar, Y. Reddy and V. S. Raja, "Growth and characterization of Cu2SnSe3 thin films", Materials chemistry and physics, 96 (2), 442-446, 2006.
    [45] D.-H. Kuo, W.-D. Haung, Y.-S. Huang, J.-D. Wu and Y.-J. Lin, "Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2", Thin solid films, 518 (24), 7218-7221, 2010.
    [46] D.-H. Kuo, W.-D. Haung, Y.-S. Huang, J.-D. Wu and Y.-J. Lin, "Effect of post-deposition annealing on the performance of D.C. sputtered Cu2SnSe3 thin films", Surface and Coatings Technology, 205, Supplement 1 (0), S196-S200, 2010.
    [47] M. A. S. Mohd Yunos, Z. A. Talib, W. M. Mat Yunus, J. Liew Ying Chyi and W. S. Paulus, "X-RAY DIFFRACTION ANALYSIS OF THERMALLY EVAPORATED COPPER TIN SELENIDE THIN FILMS AT DIFFERENT ANNEALING TEMPERATURE", Jurnal Sains Nuklear Malaysia, 23 (2), pp. 46-52, 2011.
    [48] J. Jeong, H. Chung, Y. C. Ju, J. W. Moon, J. S. Roh, S. Yoon, Y. R. Do and W. Kim, "Colloidal synthesis of Cu2SnSe3 nanocrystals", Materials Letters, 64 (19), 2043-2045, 2010.
    [49] S. Bai, Y. Pei, L. Chen, W. Zhang, X. Zhao and J. Yang, "Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12", Acta Materialia, 57 (11), 3135-3139, 2009.
    [50] X. Shi, J. Yang, S. Bai, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen and W. Wong‐Ng, "On the Design of High‐Efficiency Thermoelectric Clathrates through a Systematic Cross‐Substitution of Framework Elements", Advanced Functional Materials, 20 (5), 755-763, 2010.
    [51] L. Xi, J. Yang, W. Zhang and L. Chen, "Anomalous Dual-Element Filling in Partially Filled Skutterudites", Journal of the American Chemical Society, 131 (15), 5560-5563, 2009.
    [52] W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu and X. Tang, "Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler", Journal of the American Chemical Society, 131 (10), 3713-3720, 2009.
    [53] G. A. Slack, "Thermal Conductivity of II-VI Compounds and Phonon Scattering by Fe^{2+} Impurities", Physical Review B, 6 (10), 3791, 1972.
    [54] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'quinn, "Thin-Film thermoelectric devices with high room-temperature figures of merit", Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 120, 2010.
    [55] C. Keffer, T. M. Hayes and A. Bienenstock, "PbTe Debye-Waller Factors and Band-Gap Temperature Dependence", Physical Review Letters, 21 (25), 1676-1678, 1968.
    [56] P. Larson, S. Mahanti and M. Kanatzidis, "Electronic structure and transport of Bi_ {2} Te_ {3} and BaBiTe_ {3}", Physical Review B, 61 (12), 8162, 2000.
    [57] X. J. Wang, M. B. Tang, J. T. Zhao, H. H. Chen and X. X. Yang, "Thermoelectric properties and electronic structure of Zintl compound BaZn2Sb2", Applied Physics Letters, 90 (23), 232107-232107-3, 2007.
    [58] H. Goldsmid and J. Sharp, "Estimation of the thermal band gap of a semiconductor from Seebeck measurements", Journal of electronic materials, 28 (7), 869-872, 1999.
    [59] K. Hirono, M. Kono and T. Irie, "On the Electrical and Thermal Properties of the Ternary Chalcogenides A2IBIVX3, AIBVX2 and A3IBVX4 (AI= Cu; BIV= Ge, Sn; BV= Sb; X= S, Se, Te). I. Thermoelectric Properties at Room Temperature", Japanese Journal of Applied Physics, 7 54, 1968.
    [60] Y. F. Du, J. Q. Fan, W. H. Zhou, Z. Zhou, J. Jiao and S. Wu, "One-Step Synthesis of Stoichiometric Cu2ZnSnSe4 as Counter Electrode for Dye-Sensitized Solar Cells", ACS Applied Materials & Interfaces, 4 1796-1802, 2012.
    [61] 汪建民等人, "材料分析", 中國材料科學學會, 1998.
    [62] J. C. Vickerman and I. S. Gilmore, "Surface analysis: the principal techniques", Wiley Online Library, 2009.
    [63] R. L. Weiher and R. P. Ley, "Optical Properties of Indium Oxide", Journal of Applied Physics, 37 (1), 299-302, 1966.
    [64] 王孟亮, "拉曼光譜學及其在生化上的應用", 1983.
    [65] C. Raman, "A change of wave-length in light scattering", Nature, 121 (3051), 619-619, 1928.
    [66] C. S. Lopes, C. E. Foerster, F. C. Serbena, P. R. Júnior, A. R. Jurelo, J. L. P. Júnior, P. Pureur and A. L. Chinelatto, "Raman spectroscopy of highly oriented FeSe0. 5Te0. 5 superconductor", Superconductor Science and Technology, 25 025014, 2012.
    [67] X. Chen, X. Wang, C. An, J. Liu and Y. Qian, "Preparation and characterization of ternary Cu–Sn–E (E= S, Se) semiconductor nanocrystallites via a solvothermal element reaction route", Journal of Crystal Growth, 256 (3), 368-376, 2003.
    [68] G. Marcano, C. Rincón, S. López, G. Sánchez Pérez, J. Herrera-Pérez, J. Mendoza-Alvarez and P. Rodríguez, "Raman spectrum of monoclinic semiconductor Cu2SnSe3", Solid State Communications, 151 (1), 84-86, 2011.
    [69] B. Minceva-Sukarova, M. Najdoski, I. Grozdanov and C. J. Chunnilall, "Raman spectra of thin solid films of some metal sulfides", Journal of Molecular Structure, 410–411 (0), 267-270, 1997.
    [70] M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok and E. Mellikov, "Cu2Zn1–xCdxSn(Se1–ySy)4 solid solutions as absorber materials for solar cells", physica status solidi (a), 205 (1), 167-170, 2008.
    [71] C. Wagner, W. Riggs, L. Davis, J. Moulder and G. Muilenberg, "Handbook of XPS", 1979.
    [72] L. Partain, R. Schneider, L. Donaghey and P. Mcleod, "Surface chemistry of CuxS and CuxS/CdS determined from x‐ray photoelectron spectroscopy", Journal of applied physics, 57 (11), 5056-5065, 1985.
    [73] R. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32 (5), 751-767, 1976.
    [74] N. Amiri and A. Postnikov, "Secondary phase Cu2SnSe3 vs. kesterite Cu2ZnSnSe4: similarities and differences in lattice vibration modes", Arxiv preprint arXiv:1204.6473, 2012.
    [75] F. Hergert and R. Hock, "Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X", Thin solid films, 515 (15), 5953-5956, 2007.
    [76] R. A. Wibowo, W. H. Jung, M. H. Al-Faruqi, I. Amal and K. H. Kim, "Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders", Materials chemistry and physics, 124 (2-3), 1006-1010, 2010.
    [77] M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja and E. Mellikov, "Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy", Thin solid films, 2011.
    [78] F. Hergert and R. Hock, "Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X=S,Se) starting from binary chalcogenides", Thin solid films, 515 (15), 5953-5956, 2007.
    [79] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline and A. G. Schrott, "A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device", Advanced Materials, 20 (19), 3657-3662, 2008.
    [80] D. B. Mitzi, "Solution processing of chalcogenide semiconductors via dimensional reduction", Advanced Materials, 21 (31), 3141-3158, 2009.
    [81] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac and A. G. Schrott, "Hydrazine-based deposition route for device-quality CIGS films", Thin solid films, 517 (7), 2158-2162, 2009.
    [82] T. K. Todorov, K. B. Reuter and D. B. Mitzi, "High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber", Advanced Materials, 22 (20), E156-E159, 2010.
    [83] E. G. Tulsky and J. R. Long, "Dimensional Reduction:  A Practical Formalism for Manipulating Solid Structures", Chemistry of Materials, 13 (4), 1149-1166, 2001.
    [84] A. Myers Kelley, "Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution†", The Journal of Physical Chemistry A, 112 (47), 11975-11991, 2008.

    下載圖示 校內:2016-08-01公開
    校外:2016-08-01公開
    QR CODE