簡易檢索 / 詳目顯示

研究生: 許志遠
Hsu, Chin-Yuan
論文名稱: 基於軟式計算技術之智慧型影像濾波器
An Intelligent Image Filter based on Soft-Computing Techniques
指導教授: 李健興
Lee, Chang-Shing
郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 100
中文關鍵詞: 突波雜訊影像處理模糊數基因演算法模糊推論
外文關鍵詞: Fuzzy Inference, Fuzzy Number, Genetic Algorithm, Impulse Noise, Image Processing
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文提出一個基於軟式計算技術之智慧型影像濾波器包括基因型模糊影像濾波器(Genetic-based Fuzzy Image Filter, GFIF)及多維基因型模糊影像濾波器(Multilayer Genetic-based Fuzzy Image Filter, MGFF),用來去除突波雜訊及復原高污染影像。GFIF包括模糊數建構程序、模糊濾波程序、基因學習程序及一個影像知識庫。第一步,模糊數建構程序會讀取一張樣品影像或是無雜訊影像,然後建構初始影像知識庫。第二步,模糊濾波程序包括平行模糊推論機制、模糊均值程序及模糊決策程序。模糊濾波程序會參考影像知識庫以去除突波雜訊。最後,利用基因學習程序調整影像知識庫內含的參數以達到更佳的濾波能力。本論文將GFIF處理灰階影像能力保留並修改其模糊濾波程序及調整基因學習的編碼,使其更適合應用於彩色影像濾波上,稱之為MGFF。由MSE及MAE統計曲線圖及相關實驗結果得知,GFIF及MGFF皆比現今所提出之濾波方法更有效率。透過濾波後影像的客觀觀察,GFIF及MGFF對於影像本身的色度及影像邊緣,與影像細節和紋理都有比較好的保留,而且其具有較好的去除雜訊能力。

      In this paper, we propose an intelligent image filter based on soft-computing techniques including a genetic based fuzzy image filter (GFIF) and a multilayer genetic based fuzzy image filter (MGFF) to remove impulse noise from highly corrupted images. GFIF consists of a fuzzy number construction process, a fuzzy filtering process, a genetic learning process, and an image knowledge base. First, the fuzzy number construction process will receive a sample image or the noise-free image, then construct an image knowledge base for the fuzzy filtering process. Second, the fuzzy filtering process contains a parallel fuzzy inference mechanism, a fuzzy mean process, and a fuzzy decision process to perform the task of noise removing. Finally, based on genetic algorithm, the genetic learning process will adjust the parameters of the image knowledge base. MGFF is extended from GFIF to apply color image. By the experimental results, GFIF and MGFF achieve better performance than the state-of-the-art filters based on the criteria of Mean-Square-Error (MSE) and Mean-Absolute-Error (MAE). On the subjective evaluation of those filtered images, GFIF and MGFF also result in a higher quality of global restoration.

    目錄 I 圖目錄 III 表目錄 VI 第一章 緒論 11 1.1 研究動機與目的 11 1.2 論文架構 12 第二章 相關研究與文獻探討 13 2.1 影像濾波 13 2.1.1 數位影像表示法 13 2.1.2 影像濾波定義 14 2.1.3 灰階影像濾波器概觀  14 2.1.4 彩色影像濾波器概觀  19 2.2 影像品質評估(Quantitative for Images) 20 2.2.1 灰階影像品質評估(Quantitative for Gray Images) 20 2.2.1.1 平均方根誤差(Mean Square Error) 21 2.2.1.2 平均绝對誤差(Mean Absolute Error) 21 2.2.2 彩色影像品質評估(Quantitative for Color Images) 22 2.2.2.1 平均方根誤差(Mean Square Error) 22 2.2.2.2 平均绝對誤差(Mean Absolute Error) 22 2.3 模糊推論(Fuzzy Inference) 23 第三章 基因型模糊影像濾波器 27 3.1 簡介 27 3.2 基因型模糊影像濾波器系統架構 27 3.3 平行模糊推論機制 29 3.3.1 平行模糊推論機制 30 3.3.2 模糊均值程序 32 3.3.3 模糊決策程序 33 3.4 基因學習程序 34 第四章 多維基因型模糊影像濾波器 39 4.1 簡介 39 4.2 多維模糊影像濾波器器架構 39 4.3 平行模糊推論機制 41 4.3.1 模糊均值關係矩陣程序 43 4.3.2 平行模糊推論機制 44 4.3.3 模糊調整程序 45 4.4 基因學習程序 46 第五章 基因型模糊影像濾波器實驗結果分析與評估 50 第六章 多維基因型模糊影像濾波器實驗結果分析與評估 68 第七章 結論與未來研究方向 92 7.1 結論 92 7.2 後續研究之建議 92 參考文獻 94 Appendix A 97 Appendix B 99

    [1] R. C. Gonzalez and R. E. Woods, Dogital Image Processing. Pearson Education, Upper Saddle River, New Jersey.
    [2] K. Arakawa, “Median filter based on fuzzy rules and its application to image restoration,” Fuzzy Sets and Systems, vol. 77, pp. 3-13, 1996.
    [3] E. Abreu and S.K. Mitra, “A signal-dependent rank ordered mean (SD-ROM) filter”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP-95, Detroit, pp. 2371-2374, 1995.
    [4] C. S. Lee, Y. H. Kuo, and P. T. Yu, “Weighted fuzzy mean filters for image processing”, Fuzzy Sets and Systems, vol. 89, pp. 157-180, 1997.
    [5] Y. H. Kuo, C. S. Lee, and C. L. Chen, “High-stability AWFM filter for signal restoration and its hardware design,” Fuzzy Sets and Systems, vol. 114, no. 2, pp. 185-202, 2000.
    [6] F. Russo, “Hybrid neuro-fuzzy filter for impulse noise removal,” Pattern Recognition, vol. 32, pp. 1843-1855, 1999.
    [7] F. Russo, “Noise removal from image data using recursive neurofuzzy filters,” IEEE Trans. on Instrumentation and Measurement, vol. 49, no. 2, pp. 307-314, 2000.
    [8] J. H. Wang, W. J. Liu, and L. D. Lin, “Histogram-based fuzzy filter for image restoration,” IEEE Trans. On Systems, Man and Cybernetics, Part B, vol.32, no. 2, pp. 230-238, 2002.
    [9] R. Lukac, “Adaptive vector median filtering,” Pattern Recognition Letters, vol. 24, pp. 1889-1899, 2003.
    [10] G. Pok, J. C. Liu, and A. S. Nair, “Selective removal of impulse noise based on homogeneity level information,” IEEE Trans. on Image Processing, vol. 12, no. 1, pp. 85-92, 2003.
    [11] J. Y. Chang and J. L. Chen, “Classified-augmented median filters for image restoration,” IEEE Trans. on Instrumentation and Measurement, vol. 53, no. 2, pp.351-356, 2004.
    [12] P. Liu, “Representation of digital image by fuzzy neural network,” Fuzzy Sets and Systems, vol. 130, pp.109-123, 2002.
    [13] H. H. Tsai and P. T. Yu, “Adaptive fuzzy hybrid multichannel filters for removal of impulsive noise from color images,” Signal Processing, vol. 74, pp. 127-151, 1999.
    [14] R. S. Lin and Y. C. Hsueh, “Multichannel filtering by gradient information,” Signal Processing, vol. 80, no. 2, pp. 279-293, 2000.
    [15] H. H. Tsai and P. T. Yu, “Genetic-based fuzzy hybrid multichannel filters for color image restoration,” Fuzzy Sets and Systems, vol. 114, no. 2, pp. 203-224, 2000.
    [16] M. Barni, F. Buti, F. Bartolini, and V. Cappellini, “A quasi-Euclidean norm to speed up vector median filtering,” IEEE Trans. on Image Processing, Vol. 9, no. 10, pp. 1704-1709, 2000.
    [17] M. I. Vardavoulia, I. Andreadis, and Ph. Tsalides, “A new vector median filter for colour image processing,” Pattern Recognition Letters, vol. 22, no. 6-7, pp. 675-689, 2001.
    [18] R. Lukac, “Adaptive vector median filtering,” Pattern Recognition Letters, vol. 24, no. 12, pp. 1889-1899, 2003.
    [19] O. Cord’on, F. Herrera, and P. Villar, “Generating the Knowledge Base of a Fuzzy Rule-Based System by the Genetic Learning of the Data Base,” IEEE Trans. on Fuzzy System, vol. 9, no. 4, pp. 667-674, 2001.
    [20] V. Castelli and L. D. Bergman, Image Database Theory and Application. John Wiley & Sons, Inc., New York, 2002.
    [21] C. S. Lee and C. Y. Pan, “An intelligent fuzzy agent for meeting scheduling decision support system”, Fuzzy Sets and Systems, vol. 142, pp. 467-488, 2004.
    [22] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications. Pearson Education Taiwan Ltd., Twiwan.
    [23] 孫宗瀛、楊英魁,「Fuzzy控制:理論、時作與應用」,台北,全華科技圖書股份有限公司,2001。
    [24] 李允中、王小璠、蘇木春,「模糊理論及其應用」,台北,全華科技圖書股份有限公司,2003。
    [25] 王文俊,「認識Fuzzy」,台北,台北,全華科技圖書股份有限公司,2000。
    [26] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control and decision system,” IEEE Transactions on Computers, vol. 40, no. 12, pp. 1320-1336, 1991.
    [27] C. S. Lee, J. X. Liao, and Y. H. Kuo, “A semantic-based concept clustering mechanism for chinese news ontology construction,” International Computer Symposium, Taiwan, 2002.
    [28] C. S. Lee, C. P. Chen, H. J Chen, and Y. H. Kuo, “A fuzzy classification agent for personal e-news service,” International Journal of Fuzzy Systems, vol. 4, no. 4, pp. 849-856, 2002.
    [29] I. Pitas and P. Tsakalides, “Multivariate ordering in color image filtering,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 1, no. 3, pp. 247-259, 1991.

    下載圖示 校內:立即公開
    校外:2004-08-23公開
    QR CODE