簡易檢索 / 詳目顯示

研究生: 李京蒲
Li, Jing-Pu
論文名稱: 利用鎖相放大電路設計高效能多通道近紅外光譜系統
Design of High Performance Multi-channel Near-infrared Spectroscopy System Using Lock-in Amplification
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 49
中文關鍵詞: 近紅外光譜鎖相放大振幅調變
外文關鍵詞: Near infrared spectroscopy system, lock-in amplification, amplitude modulation
相關次數: 點閱:42下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近紅外光譜(NIRS)系統是一種非侵入性光學測量儀器,用於測量組織中氧合血紅蛋白和脫氧血紅蛋白的濃度變化,作為測量腦功能的評估工具。儘管已經開發了各種 NIRS 系統,但本研究的目的是開發一種高性能的嵌入式連續波 NIRS,為臨床應用提供模塊化和可配置的多通道設備。特別是,本研究採用電流調製訊號進行鎖相放大,增強 NIRS 訊號並抑制環境噪聲,但也同時增加電路設計的複雜性。
    使用波長為 740 nm 和 880 nm 的兩個 LED 作為光源,搭配矽光電二極管接收組織散射光。兩個波長的光源採用幅度調製技術在固定的時間進行脈衝,並使用鎖相放大器進行解調。鎖相放大有助於從噪聲中提取和過濾光訊號,從而提供更高的訊噪比。總體而言,開發了一種多通道近紅外光譜嵌入式系統,該系統可以同時提供左右半球的大腦活動,每個通道的取樣率為 50 Hz。結合用戶界面,用戶可以輕鬆控制系統並依據實時數據監控中進行調整。分析軟件可以簡單的編輯和計算,顯示血氧濃度的變化。通過執行上臂動脈閉塞實驗驗證本系統的功能,根據先前的研究,可以觀察到血氧濃度的明顯變化。此外在快速手指敲擊實驗下進行了應用於兩個半球前葉的 NIRS 測量。將記錄的數據與市售儀器 NIRScout-1624 進行比較。儘管受試者之間的變異性很高,但平均後的氧合血紅蛋白和脫氧血紅蛋白曲線表現出相似的特徵。
    本研究展示了一種多通道 NIRS 設備且在手指敲擊實驗期間的手臂閉塞和前額葉平均血流動力學響應中得到確認及驗證。雖然鎖相放大可以提供更好的抑制環境噪聲,但光強度或接收光電二極管不足以記錄微弱的血流動力學變化。 NIRS 系統的未來發展可以進一步優化,以提高靈敏度並提供遠程記錄,而不會犧牲尺寸和成本。最終目標是開發一種具有無線傳輸功能的高性能和多功能 NIRS 測量系統,可用於研究臨床未滿足需求的大腦和外周肌肉血流動力學變化。
    關鍵字:近紅外光譜、鎖相放大、振幅調變。

    The near-infrared spectroscopy (NIRS) system is a non-invasive optical measurement instrument used to measure the concentration changes of oxyhemoglobin and deoxyhemoglobin in tissue which has been designed as an evaluation tool for measuring brain function. Although various NIRS systems have been developed, the aim of this study is to develop a high performance embedded continuous-wave NIRS to provide a modular and configurable multichannel device for clinical applications. Especially, current modulation for the lock-in amplification is adopted in this study to enhance NIRS signals and suppress ambient noise without increasing the complexity of circuit design.
    Two LED components with wavelengths of 740 nm and 880 nm were used as light sources incorporated with the matched silicon photodiodes to receive tissue-scattered lights. Two wavelengths of light sources were pulsed in a fixed timing with amplitude modulation technique which can be demodulated using a lock-in amplifier. Lock-in amplification can extract the optical signal and filter out noise providing a higher signal-to-noise ratio. The functionality of the system was verified by performing upper arm artery occlusion experiments from which evident changes of blood oxygen concentration can be observed in accordance with previous studies. Furthermore, NIRS measurements applied to the prefrontal lobe of two hemispheres were performed under a quick finger tapping experiment. The recorded data were compared with a commercially available instrument, NIRScout-1624. Although the variability among the subjects is high, the oxyhemoglobin and deoxyhemoglobin curves after averaging exhibited similar characteristics. Overall, an embedded system of multichannel NIRS is developed which can provide brain activities of left and right hemispheres simultaneously at a sampling rate of 50 Hz for each channel. Combined with the user interface, the users can easily control the system and perform adjustments in real-time data monitoring. The analysis software can be simply edited and calculated to display the changes of blood oxygen concentration.
    This study demonstrated a multi-channel NIRS device which has been verified and validated in arm occlusion and the average hemodynamic response of the prefrontal lobe during the finger tapping experiment. Although lock-in amplification can provide better immunity to ambient noise, the optical intensity or receiving photodiode is not sufficient to record weak hemodynamic changes. Future development of the NIRS system can be further optimized to increase sensitivity and provide remote recording without sacrificing the size and cost. The ultimate goal is to develop a high performance and versatile NIRS measurement system with wireless transmission which can be used to investigate the brain and peripheral muscle hemodynamic changes with clinically unmet needs.

    Keywords: Near infrared spectroscopy system, lock-in amplification, amplitude modulation.

    摘要 I Abstract II Contents IV List of Tables VI List of Figures VI Chapter 1 Introduction 1 1.1 Introduction of near-infrared spectroscopy 1 1.2 Principles of near infrared spectroscopy 2 1.3 Three major types of NIRS system 3 1.4 Modulation and lock-in demodulation 5 1.5 Continuous-wave NIRS system 7 1.6 Review of existing fNIRS systems 8 1.7 Motivations and the aims of the study 9 Chapter 2 Materials and Methods 10 2.1 System composition 10 2.2 Hardware design 11 2.2.1 Microcontroller unit 12 2.2.2 Current regulator 13 2.2.3 Signal preprocessing circuit 14 2.3 Modulation and lock-in amplification 15 2.4 Firmware design 18 2.5 Software design 19 2.6 Design of NIRS optical probe 21 2.7 Experimental design 22 2.7.1 Forearm occlusion 22 2.7.2 Prefrontal cortex hemodynamic response with finger tapping task 23 2.8 Data analysis 24 2.9 A commercial fNIRS system- NIRScout 1624 25 Chapter 3 Results 28 3.1 System verification of developed CW-NIRS system 28 3.1.1 Verification of light source 28 3.1.2 Verification of modulation and lock-in amplification 29 3.1.3 Validation of measurement system 31 3.2 Human forearm occlusion 32 3.3 Prefrontal cortex hemodynamic response with finger tapping task 35 3.4 Comparison of NIRx of prefrontal cortex hemodynamic response 39 Chapter 4 Discussion 40 4.1 Features of developed NIRS system 40 4.2 NIRS system verification and validation 41 4.3 System Optimization 43 Chapter 5 Conclusion and Future works 45 References 46

    Althobaiti, Murad, and Ibraheem Al-Naib. 2020. 'Recent Developments in Instrumentation of Functional Near-Infrared Spectroscopy Systems', Applied Sciences, 10.
    Attwell, D., A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman. 2010. 'Glial and neuronal control of brain blood flow', Nature, 468: 232-43.
    Chen, W. L., J. Wagner, N. Heugel, J. Sugar, Y. W. Lee, L. Conant, M. Malloy, J. Heffernan, B. Quirk, A. Zinos, S. A. Beardsley, R. Prost, and H. T. Whelan. 2020. 'Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions', Front Neurosci, 14: 724.
    Chiarelli, A. M., G. C. Giaconia, D. Perpetuini, G. Greco, L. Mistretta, R. Rizzo, V. Vinciguerra, M. F. Romeo, A. Merla, and P. G. Fallica. 2019. 'Wearable, Fiber-less, Multi-Channel System for Continuous Wave Functional Near Infrared Spectroscopy Based on Silicon Photomultipliers Detectors and Lock-In Amplification', Annu Int Conf IEEE Eng Med Biol Soc, 2019: 60-66.
    Ferrari, M., and V. Quaresima. 2012. 'A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application', Neuroimage, 63: 921-35.
    Irani, F., S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute. 2007. 'Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders', Clin Neuropsychol, 21: 9-37.
    Kassab, A., J. Le Lan, J. Tremblay, P. Vannasing, M. Dehbozorgi, P. Pouliot, A. Gallagher, F. Lesage, M. Sawan, and D. K. Nguyen. 2018. 'Multichannel wearable fNIRS-EEG system for long-term clinical monitoring', Hum Brain Mapp, 39: 7-23.
    Kiguchi, M., H. Atsumori, I. Fukasaku, Y. Kumagai, T. Funane, A. Maki, Y. Kasai, and A. Ninomiya. 2012. 'Note: wearable near-infrared spectroscopy imager for haired region', Rev Sci Instrum, 83: 056101.
    Kohl, M., C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer. 1998. 'Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals', Phys Med Biol, 43: 1771-82.
    Kuboyama, N., T. Nabetani, K. Shibuya, K. Machida, and T. Ogaki. 2004. 'The effect of maximal finger tapping on cerebral activation', J Physiol Anthropol Appl Human Sci, 23: 105-10.
    Kuboyama, N., T. Nabetani, K. Shibuya, K. Machida, and T. Ogaki. 2005. 'Relationship between cerebral activity and movement frequency of maximal finger tapping', J Physiol Anthropol Appl Human Sci, 24: 201-8.
    Lange, Frédéric, and Ilias Tachtsidis. 2019. 'Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives', Applied Sciences, 9: 1612.
    Lee, S., Y. Shin, A. Kumar, M. Kim, and H. N. Lee. 2019. 'Dry Electrode-Based Fully Isolated EEG/fNIRS Hybrid Brain-Monitoring System', IEEE Trans Biomed Eng, 66: 1055-68.
    Matsukawa, K., R. Asahara, M. Uzumaki, Y. Hashiguchi, K. Ishii, J. Wang, and S. A. Smith. 2021. 'Central command-related increases in blood velocity of anterior cerebral artery and prefrontal oxygenation at the onset of voluntary tapping', Am J Physiol Heart Circ Physiol, 321: H518-h31.
    Mohamed, M., E. Jo, N. Mohamed, M. Kim, J. D. Yun, and J. G. Kim. 2021. 'Development of an Integrated EEG/fNIRS Brain Function Monitoring System', Sensors (Basel), 21.
    Piper, S. K., A. Krueger, S. P. Koch, J. Mehnert, C. Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz. 2014. 'A wearable multi-channel fNIRS system for brain imaging in freely moving subjects', Neuroimage, 85 Pt 1: 64-71.
    Raichle, M. E., and M. A. Mintun. 2006. 'Brain work and brain imaging', Annu Rev Neurosci, 29: 449-76.
    Safaie, J., R. Grebe, H. Abrishami Moghaddam, and F. Wallois. 2013. 'Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system', J Neural Eng, 10: 056001.
    Saikia, M. J., W. G. Besio, and K. Mankodiya. 2019. 'WearLight: Toward a Wearable, Configurable Functional NIR Spectroscopy System for Noninvasive Neuroimaging', IEEE Trans Biomed Circuits Syst, 13: 91-102.
    Sawan, M., M. T. Salam, J. Le Lan, A. Kassab, S. Gelinas, P. Vannasing, F. Lesage, M. Lassonde, and D. K. Nguyen. 2013. 'Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices', IEEE Trans Biomed Circuits Syst, 7: 186-95.
    Scholkmann, F., S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf. 2014. 'A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology', Neuroimage, 85 Pt 1: 6-27.
    Scholkmann, F., and M. Wolf. 2013. 'General equation for the differential pathlength factor of the frontal human head depending on wavelength and age', J Biomed Opt, 18: 105004.
    Strangman, G., D. A. Boas, and J. P. Sutton. 2002. 'Non-invasive neuroimaging using near-infrared light', Biol Psychiatry, 52: 679-93.
    Uchitel, J., E. E. Vidal-Rosas, R. J. Cooper, and H. Zhao. 2021. 'Wearable, Integrated EEG-fNIRS Technologies: A Review', Sensors (Basel), 21.
    von Lühmann, A., C. Herff, D. Heger, and T. Schultz. 2015. 'Toward a Wireless Open Source Instrument: Functional Near-infrared Spectroscopy in Mobile Neuroergonomics and BCI Applications', Front Hum Neurosci, 9: 617.
    von Luhmann, A., C. Herff, D. Heger, and T. Schultz. 2015. 'Toward a Wireless Open Source Instrument: Functional Near-infrared Spectroscopy in Mobile Neuroergonomics and BCI Applications', Front Hum Neurosci, 9: 617.
    von Luhmann, A., H. Wabnitz, T. Sander, and K. R. Muller. 2017. 'M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring', IEEE Trans Biomed Eng, 64: 1199-210.
    Xu, J., M. Konijnenburg, S. Song, H. Ha, R. van Wegberg, M. Mazzillo, G. Fallica, C. Van Hoof, W. De Raedt, and N. Van Helleputte. 2018. 'A 665 μW Silicon Photomultiplier-Based NIRS/EEG/EIT Monitoring ASIC for Wearable Functional Brain Imaging', IEEE Trans Biomed Circuits Syst, 12: 1267-77.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE