| 研究生: |
黃勝煌 Sheng-huang, Huang |
|---|---|
| 論文名稱: |
以分子動力學模擬奈米蝕刻之研究 Investigation of Nanoscale Etching Process Using Molecular Dynamics Simulation |
| 指導教授: |
黃吉川
Hwang, Chi-Chuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 半導體製程 、奈米蝕刻 、分子動力學 |
| 外文關鍵詞: | molecular dynamics simulation, semiconductor, nanoscale etching |
| 相關次數: | 點閱:95 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積體電路的出現改善以往體積龐大的電器設備,在半導體技術的蓬勃發展之際,也為人類帶來了相當大的便利,而半導體元件越做越微小絕對是目前不可否認的趨勢,而就目前的半導體技術而言,蝕刻製程絕對是一個缺少不了的課題,對於製程精度具有極大的影響力,尤其面對下一世代的奈米製程,精度對於製程來說尤為重要,本文以分子動力學研究奈米級蝕刻製程的過程,由模擬中找出最佳的蝕刻製程參數,以作為日後研究奈米級蝕刻的重要參考。
本文以分子動力學的方法,觀察蝕刻原子暫態行為,所探討的參數為蝕刻分子的入射動能,以蝕刻出來的形貌結構及蝕刻速率來判別蝕刻品質的良窳。入射的氟烷分子動能較小時,使得入射的氟烷分子只與矽基板表面產生化學反應而下一個入射的氟烷分子,由於撞擊的能量太小,並沒有足夠的動能將先前以反應的分子撞擊掉;入射動能較大時,使得入射的氟烷分子由於撞擊的能量太大,而使得氟烷分子直接深入矽基板內部,而不是由基板表面慢慢的往下蝕刻,造成蝕刻區之外的部分受到破壞。因此過度的提高入射動能,並不一定能夠使蝕刻的品質更好,本文中將找出一個較佳的蝕刻動能。
The integrated circuit improve the huge electric equipment. The development of IC bring us the convenience life. Undoubtedly more and more tiny semiconductor device is the current trend. The etching process play an important role in semiconductor technology and the etching precision also influences in the next generation of nano-technolgy.
This study focuses on molecular dynamics simulation about etching process. We observe the steady state of atom behavior and investigate the influence of etching molecular incident energy. We discuss quality profile after etching process. The molecule of flourcarbon which has smaller incident energy has not enough energy to dash against from silicon surface. The molecule of flourcarbon has larger incident energy to damage in the other region where we want not to etching. On our result of this study, there is no good quality in etching process which has smaller and larger incident energy both. We will find out the optimum incident energy in this study about etching process.
【1】I. Hasan, C. A. Pawlowicz, L. P. Berndt, and N. G. Tarr, “Low temperature SF6/O2 electron cyclotron resonance plasma etching for polysilicon gates”, J.Vac. Sci. Technol. A, vol. 20, 983, 2002.
【2】Jason E. Sanabia, John H. Moore and John A. Tossell, “CF3I on a silicon surface: Adsorption, temperature-programmed desorption, and electron-stimulated desorption”, J. Chem. Phys., Vol. 116, 10402, 2002.
【3】Sanabia J.E., Moore J.H., Tossell J.A. , “CF3I on a silicon surface: Adsorption, temperature-programmed desorption, and electron-stimulated desorption”, J. Chem. Phys., Vol.116, 10402, 2002.
【4】Hasan I, Pawlowicz CA, Berndt LP, “Low temperature SF6/O2 electron cyclotron resonance plasma etching for polysilicon gates”, J.Vac. Sci. Technol. A, Vol. 20, 983, 2002.
【5】Gabriel C.T., Yeh E.K., “In situ wafer temperature measurement during plasma etching”, Solid State Technol, Vol. 42, 99, 1999.
【6】Kinoshita H, “Sub-half micron etching of resist below room temperature using O2 supermagnetron plasma”, Vacuum, Vol. 55, 77, 1999.
【7】C. C. Hung, H. C. Lin, H. C. Shih, “Response surface methodology applied to silicon trench etching in Cl2/HBr/O2 using transformer coupled plasma technique”, Solid-state Electronics, Vol. 46, 791, 2002.
【8】Cho H., Lee K.P., Leerungnawarat P. ,“High density plasma via hole etching in SiC”, J. Vac. Sci. Technol. A, Vol.19, 1878, 2001.
【9】Verdonck P, Goodyear A, Mansano RD, “Importance of fluorine surface diffusion for plasma etching of silicon”, J. Vac. Sci. Technol. B, Vol. 20, 791, 2002.
【10】Chung C.W., Byun Y.H., Kim H.I., Korean, J. Chem. Eng., Vol. 19, 524, 2002.
【11】Nakaji M., Egawa T., Ishikawa H., Jpn. J. Appl. Phys., Vol. 41, L493, 2002.
【12】Ullal S.J., Singh H., Vahedi V., “Deposition of silicon oxychloride films on chamber walls during Cl2/O2 plasma etching of Si”, J. Vac. Sci. Technol. A, Vol. 20, 499, 2002.
【13】Kwon K.H., Kang S.Y., Kim S.I., J. Mater. Sci.-Mater. El., Vol. 13, 187, 2002.
【14】Reyes-Betanzo C., Moshkalyov S.A., Ramos A.C., J. Electorchem. Soc., Vol. 149, 3, 2002.
【15】Chen H.Y., Ruda H.E., “Inductively coupled plasma etching of InP using CH4/H2 and CH4/H2/N2”, J. Vac. Sci. Technol. B, Vol. 20, 47, 2002.
【16】Tripathy S., Ramam A., Chua S.J., “Characterization of inductively coupled plasma etched surface of GaN using Cl2/BCl3 chemistry”, J. Vac. Sci. Technol. A, Vol. 19, 2522, 2001.
【17】Cho H., Lee K.P., Leerungnawarat P., “High density plasma via hole etching in SiC”, J. Vac. Sci. Technol. A, Vol. 19, 1878, 2001.
【18】Koshiishi A., Araki Y., Himori S., Jpn. J. Appl. Phys.,Vol. 40, 6613, 2001.
【19】Pindo M., “Plasma etch rates: The impact of mask transmittance”, Solid State Technol, Vol.44, 55, 2001.
【20】Leerungnawarat P., Cho H., Pearton S.J., J. Electron Mater, Vol. 29, 342, 2000.
【21】Garvin C., Grizzle J.W., “Demonstration of broadband radio frequency sensing: Empirical polysilicon etch rate estimation in a Lam 9400 etch tool”, J. Vac. Sci. Technol A, Vol. 18, 1297, 2000.
【22】Lukichev V.F., Yunkin V.A., Microelectron Eng., Vol. 46, 315, 1999.
【23】Pauline Ho, Justine E. Johannes, and Richard J. Buss, Ellen Meeks, “Modeling the plasma chemistry of C2F6 and CHF3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data”, J.Vac. Sci .Technol. A, Vol. 19, 2344, 2001.
【24】Ri S.G., Yoshida H., Yamanaka S., J. Cryst. Growth., Vol. 235, 300, 2002.
【25】Fitzgerald A.G., Fan Y., John P., “Characterization of the surface morphology and electronic properties of microwave enhanced chemical vapor deposited diamond films”, J. Vac. Sci. Technol. B, Vol. 18, 2714, 2000.
【26】Volland B.E., Heerlein H., Kostic I., Microelectron Eng., Vol. 57-58, 641, 2001.
【27】Rangelow I.W., “Dry etching-based silicon micro-machining for MEMS”, Vacuum,Vol. 62, 279, 2001.
【28】Kiihamaki J., Kattelus H., Karttunen, J. Sensor Actuat A-Phys., Vol. 82, 234, 2000.
【29】Kiihamaki J., Franssila S., Phys. Scripta. T.,Vol. 79, 250, 1999.
【30】Das N.C., “Release of multi-layer metal structure in MEMS devices by dry etching technique”, Solid State Electron, Vol. 46, 501, 2002.
【31】Volland B.E., Heerlein H., Kostic I., Microelectorn Eng., Vol.57-58, 641, 2001.
【32】Cameron F. Abrams, David B. Graves, “Atomistic simulation of fluorocarbon deposition on Si by continuous bombardment with energetic CF + and CF”, J. Vac. Sci. Technol. A, Vol. 19, 175, 2001.
【33】Cameron F. Abrams and David B. Graves, “Atomistic simulation of silicon bombardment by energetic CF3+: product distributions and energies”, Thin solid films, Vol. 374, 150, 2000.
【34】Cameron F. Abrams and David B. Graves, “Molecular dynamics simulations of Si etching by energetic CF”, Journal of Applied Physics Vol.86, No.11, 5938, 1999.
【35】B. A. Helmer and David B. Graves, “Molecular dynamics simulations of Cl impacts onto a chlorinated silicon surface: Energies and angles of the reflected Cl2 and Cl fragments”, J. Vac. Sci. Technol. A, Vol. 17, 2759, 1999.
【36】J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics” , J. Chem. Phys., Vol. 18, 817-829, 1950.
【37】J. M. Haile, “Molecular dynamics simulation”, John Willy & Sons, Inc. New York, 1992.
【38】W. Eckstein, “Computer Simulation of Ion-Solid interaction”, Springer-Verlag, Berlin, 1991.
【39】M. P. Allen et al., “Computer Simulation in Chemical Physics”, Series C:Mathematical and Physical Sciences, Vol. 397, Kluwer Academic, Dordrecht, 1992.
【40】S. Erkoc, “Annual Reviews of Computational IX”, World Scientific Publishing Company, Singapore, 1-103, 2001.
【41】H. Rafii-Tabar, “Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulation”, Physics Reports , Vol. 325, 239, 2000.
【42】R. Smith et al., “Atomic & Ion Collisions in Solids and at Surfaces”, Cambridge University Press, London, 1997.
【43】G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, “Intermolecular Forces”, Oxford University Press, London, 1987.
【44】P. L. Huyskens et al., “Intermolecular Forces”, Springer-Verlag, Berlin, 1991.
【45】M. Rigby, E. B. Smith, W. A. Wakeham,and G. C. Maitland, “The Forces between Molecules”, Oxford University Press, London, 1986.
【46】D. C. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London, 1997.
【47】J. M. Goodfellow et al., “Molecular dynamics”, CRC Press, Boston, 1990.
【48】M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids”, Oxford, London, 1991.
【49】D. Frenkel and B. Smit, “Understanding Molecular Simulation”, Academic Press, San Diego, 1996.
【50】D. W. Heermann, “Computer Simulation Method”, Springer-Verlag, Berlin, 1990.
【51】M. P. Allen et al., “Computer Simulation in Chemical Physics”, Series E: Mathematical and Physical Sciences, Vol. 205, Kluwer Academic, Dordrecht, 1991.
【52】K. Maekawa, A. Itoh, ”Friction and tool wear in nano-scale machining a molecular dynamics approach”, Wear, Vol. 188, 115, 1995.
【53】J. Tersoff, “New empirical model for the structural properties of silicon”, Phys. Rev. Lett., Vol. 56, 632 , 1986.
【54】J. Tersoff, “New empirical approach for the structure and energy of covalent systems”,Phys. Rev. B, Vol. 37, 6991, 1988.
【55】J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties”,Phys. Rev. B, Vol. 38, 9902, 1988.
【56】J. Tersoff, “Modeling solid-state chemistry:Interatomic potentials for multicomponent systems”,Phys. Rev. B, Vol. 39, 5566, 1989.
【57】G. C. Abell, “Empirical chemical pseudopotential theory of molecular and metallic bonding”, Phys. Rev. B, Vol. 31, 6184, 1985.
【58】D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys. Rev. B, Vol. 42, 9458, 1990.
【59】D. W. Brenner, O. A. Shenderova, J. Harrison, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys.Condens Mat., Vol. 14, 783, 2002
【60】V. Rosato, M. Guillope, and B. Legrand, “Thermodynamics and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophical Magazine A, Vol. 59, 21, 1988.
【61】Cameron F. Abrams and David B. Graves, “Molecular dynamics simulation of si etching by energetic CF3+”, J. Appl. Phys., Vol. 86, 5938, 1999.
【62】K. Beardmore and R. Smith, “Empirical potentials for C-Si-H systems with application to C60 interaction with Si crystal surfaces”, Phil. Mag. A, Vol. 74, 1439, 1996.
【63】J. Tanaka, C. F. Abrams, and D. B. Graves, “New C-F interatomic potential for molecular dynamics simulation of fluorocarbon film formation”, J. Vac. Sci. Technol. A, Vol. 18, 938, 2000.
【64】M. V. R. Murty and H. A. Atwater, “Empirical interatomic potential for Si-H interactions”, Phys. Rev. B, Vol. 51, 4889, 1995.