| 研究生: |
魏嘉宏 Wei, Gia-Hong |
|---|---|
| 論文名稱: |
氧化亞氮/HTPB-石蠟混合火箭火焰點火與穩駐機構之研究 A study on flame ignition and stabilization mechanism of a nitrous oxide /HTPB-paraffin hybrid rocket |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 混合火箭 、火焰位置 、點火與傳播 、背向階梯流 、自然螢光 |
| 外文關鍵詞: | Hybrid rocket, flame position, flame ignition and propagation, backward-facing step, fluorescence |
| 相關次數: | 點閱:144 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在火箭推進的領域中,混合火箭佔有重要的一席之地,不過其相關研究大多著重在退縮率經驗公式的推導、增加退縮率、或是放大效應等主題上,對於點火後之火焰傳遞以及火焰穩駐的基礎現象研究則較少著墨。本篇論文則是利用一自行設計之可視燃燒器來探討混合火箭火焰由點火、傳播到穩駐的這段混合火箭點火過程。
首先利用了邊界層理論計算出了可能的火焰高度隨位置之變化,同時也利用CFD數值模擬未點火之流場的濃度分佈,並將上述兩者與實驗照片加以比較,證明混合火箭之火燄位置會位在偏富油端,而濃度場分佈主要為紊流邊界層主導其擴散與混合。
在確立點火方式後對此觸媒網點火系統進行特性探討,此系統主要是藉由建立一初始火焰來作為一熱源提供者,穩定的預熱藥柱與氧化劑,於點火4~6秒後建立一自我維持的火焰。而文章中也對此觸媒網系統與混合火箭之點火、傳播、與穩駐進行了時間與能量的詳細分析。另一方面則是找出於目前系統下之吹熄流速(8.02m/s),並利用一5mm之背向階梯流場成功將可操作區間流速提升至11.88m/s,於此同時也檢視階梯對燃燒行為的影響(包含預熱效果、燃燒效率等等)。最後則是在有階梯的流場情形下,進行了CH*自然螢光燃燒場診測,更進一步的證明上述對於氧化亞氮/HTPB-石蠟混合火箭火焰點火與穩駐機構之論述。
Hybrid rocket played an important role in many research of propulsion. Most of them related to the derivation of regression rate、increasing the regression rate、and the scale-up effect. The mechanism of flame propagation and stabilization didn't attract much attention in these literature. In this study, a visible combustor was designed to investigate flame ignition and stabilization mechanism of a nitrous oxide /HTPB-paraffin hybrid rocket.
The flame position versus various free stream velocity were predicted by the boundary layer theory. The distribution of species concentration were computed by CFD(cold flow results). These results were compared with experiments. It indicated the flame lay on the fuel rich side rather than the stoichiometric line, and the distribution of species concentration were dominated by turbulent boundary layer.
In the experiments, the characteristic of the catalytic web igniting system were examined. The catalytic web established a primitive flame to preheat the solid fuel and the oxidizer at first. Then a self sustained flame will establish within six second after the ignition. The time trace and energy analysis for the interaction between igniting system and hybrid rocket were explained. The blow-off limit for this system was found((8.02m/s). The operational range of velocity were increased by the additive of the backward-facing step. The system could have a steady combustion at 11.88m/s by a step height of 5mm. Finally, the measurement of the CH* radical proved the above statements of the flame ignition and stabilization mechanism of a nitrous oxide /HTPB-paraffin hybrid rocket again.
1. Sutton, G.P. and O. Biblarz, Rocket propulsion elements. 2010: Wiley.
2. Swami, R.D. and A. Gany, Analysis and testing of similarity and scale effects in hybrid rocket motors. Acta Astronautica, 2003. 52(8): p. 619-628.
3. Chiaverini, M.J. and K.K. Kuo, Fundamentals of hybrid rocket combustion and propulsion. Progress in astronautics and aeronautics ;. 2007, Reston, Va.: American Institute of Aeronautics and Astronautics.
4. 張家軒, 混合火箭推進劑燃燒特性研究, in 航空太空工程學系. 2001, 國立成功大學.
5. 卓世明, 石蠟燃料混合火箭之性能測試, in 航空太空工程學系碩士班. 2007, 國立成功大學.
6. Emmons, H.W., The Film Combustion of Liquid Fuel. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1956. 36(1-2): p. 60-71.
7. Marxman, G. and M. Gilbert, Turbulent boundary layer combustion in the hybrid rocket. Symposium (International) on Combustion, 1963. 9(1): p. 371-383.
8. Paul, P.J., H.S. Mukunda, and V.K. Jain, Regression rates in boundary layer combustion. Symposium (International) on Combustion, 1982. 19(1): p. 717-729.
9. Eilers, S.D. and S.A. Whitmore. Correlation of Hybrid Rocket Propellant Regression Measurements with Enthalpy-Balance Model Predictions. in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2007. Cincinnati, OH: American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344, USA, [URL:http://www.aiaa.org].
10. Karabeyoglu, M.A., B.J. Cantwell, and G. Zilliac. Development Of Scalable Space-Time Averaged Regression Rate Expressions For Hybrid Rockets. in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; Tucson. 2005. Tucson, AZ: American Institute of Aeronautics and Astronautics, The Aerospace Center, 370 L'Enfant Promenade, SW, Washington, DC, 20024, USA.
11. Zilliac, G. and M.A. Karabeyoglu. Hybrid Rocket Fuel Regression Rate Data and Modeling. in 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2006. Sacramento, CA: American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344, USA, [URL:http://www.aiaa.org].
12. Chaverini, M.J., N. Serin, D.K. Johnson, Y.-C. Lu, K.K. Kuo, and G.A. Risha, Regression rate behavior of hybrid rocket solid fuels. Journal of Propulsion and Power, 2000. 16(1): p. 125-132.
13. Chiaverini, M.J., K.K. Kuo, A. Peretz, and G.C. Harting, Regression-rate and heat-transfer correlations for hybrid rocket combustion. Journal of Propulsion and Power, 2001. 17(1): p. 99-110.
14. Chaverini, M.J., K.K. Kuo, and G.A. Risha, Hybrid Rocket Investigations at Penn State University's High Pressure Combustion Laboratory Overview and Recent Results. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009.
15. Karabeyoglu, A. Thermal Transients in Hybrid Rocket Fuel Grains - Nonlinear Effects. in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2007. Cincinnati, OH: American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344, USA, [URL:http://www.aiaa.org].
16. Serin, N. and Y.A. Gogus. Navier-Stokes investigation on reacting flow field of HTPB/O2 hybrid motor and regression rate evaluation. in 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003. Huntsville, AL: American Institute of Aeronautics and Astronautics, Inc , Reston, VA, 20191-4344, United States.
17. Bostwick, C., T. Gibbs, and E. Besnard, Liquid Oxygen Liquid Methane Co-axial Swirl Injector Development. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010.
18. Ji-Hyuk Im, S.C., Gujeong Park,Youngbin Yoon, Spray Characteristics of a Gas-centered Swirl Coaxial Injector. Asian Joint Conference on Propulsion and Power 2010, 2010.
19. Karabeyoglu, M.A., B.J. Cantwell, and D. Altman. Development and testing of paraffin-based hybrid rocket fuels. in AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 37th, Salt Lake City. 2001. United States.
20. Karabeyoglu, M.A., B.J. Cantwell, and J. Stevens. Evaluation of Homologous Series of Normal-Alkanes as Hybrid Rocket Fuels. in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; Tucson. 2005. Tucson, AZ: American Institute of Aeronautics and Astronautics, The Aerospace Center, 370 L'Enfant Promenade, SW, Washington, DC, 20024, USA.
21. Estey, P.N., D. Altman, and J.S. McFarlane. An evaluation of scaling effects for hybrid rocket motors. in AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference, 27th, Sacramento. 1991. United States.
22. Karabeyoglu, A., G. Zilliac, B. Cantwell, S. De Zilwa, and P. Castellucci. Scale-up tests of high regression rate liquefying hybrid rocket fuels. in 41st AIAA Aerospace Sciences Meeting & Exhibit, Reno. 2002. United States: Reston, VA: American Institute of Aeronautics and Astronautics, Inc.
23. Raghavan, V., A.S. Rangwala, and J.L. Torero, Laminar flame propagation on a horizontal fuel surface: Verification of classical Emmons solution. Combustion Theory and Modelling, 2009. 13(1): p. 121-141.
24. Annamalai, K. and M. Sibulkin, Flame Spread Over Combustible Surfaces for Laminar Flow Systems Part I: Excess Fuel and Heat Flux. Combustion Science and Technology, 1979. 19(5): p. 167 - 183.
25. Annamalai, K. and M. Sibulkin, Flame Spread Over Combustible Surfaces for Laminar Flow Systems Part II: Flame Heights and Fire Spread Rates. Combustion Science and Technology, 1979. 19(5): p. 185 - 193.
26. Ramachandra, A. and B.N. Raghunandan, Investigations on the Stability and Extinction of a Laminar Diffusion Flame Over a Porous Flat Plate. Combustion Science and Technology, 1984. 36(3): p. 109 - 121.
27. Chen, C.-H. and J.S. T'Ien, Diffusion Flame Stabilization at the Leading Edge of a Fuel Plate. Combustion Science and Technology, 1986. 50(4): p. 283 - 306.
28. Kooama, H., K. Miyasaka, and A.C. Fernandez-Pello, Extinction and Stabilization of a Diffusion Flame on a Flat Combustible Surface with Emphasis on Thermal Controlling Mechanisms. Combustion Science and Technology, 1987. 54(1): p. 37 - 50.
29. Ha, J.S., S.H. Shim, and H.D. Shin, Boundary Layer Diffusion Flame over a Flat Plate in the Presence and Absence of Flow Separation. Combustion Science and Technology, 1991. 75(4): p. 241 - 260.
30. Mao, C.P., H. Kodama, and A.C. Fernandez-Pello, Convective structure of a diffusion flame over a flat combustible surface. Combustion and Flame, 1984. 57(2): p. 209-236.
31. Hsu, S.-Y. and J.S. T'ien, Effect of Chemical Kinetics on Concurrent-Flow Flame Spread over Solids: A Comparison Between Buoyant Flow and Forced Flow Cases. Combustion Science and Technology, 2011. 183(4): p. 390 - 407.
32. 顧景德, 高溫紊態分流場中壁面噴流冷卻效應之暫態研究, in 動力機械學系. 1996, 國立清華大學.
33. 蘇裕傑, 高溫分離流場之壁面蒸散冷卻暫態研究, in 動力機械工程學系. 2001, 國立清華大學.
34. Stamatov, V., D.R. Honnery, and J. Soria, Visualization of flow development in hybrid rocket motors with high regression rates. Journal of Propulsion and Power, 2005. 21(4): p. 613-618.
35. Raghunandan, B.N. and G.P. Yogesh, Recirculating flow over a burning surface--flame structure and heat transfer augmentation. Symposium (International) on Combustion, 1989. 22(1): p. 1501-1507.
36. Takahashi, F., W.J. Schmoll, E.A. Strader, and V.M. Belovich, Suppression of a nonpremixed flame stabilized by a backward-facing step. Combustion and Flame, 2000. 122(1-2): p. 105-116.
37. Yang, J.T., F.C. Hsiao, and Y.C. Lin, Transient flame spread during convective ignition of solid fuel in a sudden-expansion combustor. Combustion and Flame, 2009. 156(10): p. 1917-1925.
38. Rohmat, T.A., H. Katoh, T. Obara, T. Yoshihashi, and S. Ohyagi, Diffusion flame stabilized on a porous plate in a parallel airstream. Aiaa Journal, 1998. 36(11): p. 1945-1952.
39. Law, C.K., Combustion physics. 2006: Cambridge Univ Pr.
40. Ruetsch, G.R., L. Vervisch, and A. Linan, EFFECTS OF HEAT RELEASE ON TRIPLE FLAMES. Physics of Fluids, 1995. 7(6): p. 1447-1454.
41. Ko, Y.S. and S.H. Chung, Propagation of unsteady tribrachial flames in laminar non-premixed jets. Combustion and Flame, 1999. 118(1-2): p. 151-163.
42. Plessing, T., P. Terhoeven, N. Peters, and M.S. Mansour, An experimental and numerical study of a laminar triple flame. Combustion and Flame, 1998. 115(3): p. 335-353.
43. Seo, J.I., N.I. Kim, and H.D. Shin, An experimental study of the fuel dilution effect on the propagation of methane-air tribrachial flames. Combustion and Flame, 2008. 153(3): p. 355-366.
44. Chung, S.H., Stabilization, propagation and instability of tribrachial triple flames. Proceedings of the Combustion Institute, 2007. 31: p. 877-892.
45. Lyons, K.M., Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments. Progress in Energy and Combustion Science, 2007. 33(2): p. 211-231.
46. Dyer, J., E. Doran, Z. Dunn, K. Lohner, C. Bayart, A. Sadhwani, G. Zilliac, B. Cantwell, and A. Karabeyoglu. Design and Development of a 100 km Nitrous Oxide/Paraffin Hybrid Rocket Vehicle. in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2007. Cincinnati, OH: American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344, USA, [URL:http://www.aiaa.org].
47. 簡毓倩, 火焰自然螢光量測系統之研發, in 航空太空工程學系碩博士班. 2007, 國立成功大學: 台南市.
48. 鄭雅云, 非介入式同步診測碳氫火焰局部當量比與火焰溫度之自然螢光量測系統, in 航空太空工程學系碩博士班. 2009, 國立成功大學: 台南市.
49. Chiaverini, M.J., G.C. Harting, Y.-C. Lu, K.K. Kuo, A. Peretz, S. Jones, B. Wygle, and J.P. Arves. Pyrolysis behavior of hybrid rocket solid fuels under rapid heating conditions. in AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 33rd, Seattle. 1997. United States.
校內:2021-01-01公開