| 研究生: |
王琬瑜 Wang, Wan-Yu |
|---|---|
| 論文名稱: |
探討包裹在奈米複合物中修飾過的登革病毒非結構性蛋白1所誘導的長期性細胞免疫反應 Studies on the long-lasting cellular immune responses induced by chimeric dengue virus nonstructural protein 1-encapsulated nanocomplexes |
| 指導教授: |
林以行
Lin, Yee-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 登革病毒、非結構性蛋白1 、高分子奈米複合物 、細胞免疫反應 、疫苗 |
| 外文關鍵詞: | dengue virus, nonstructural protein 1, polymer-based nanocomplexes, cellular immune responses, vaccine |
| 相關次數: | 點閱:125 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革熱是全球重要的蟲媒病毒傳染病之一,每年造成數百萬的病例。主要是經由登革病毒 (dengue virus) 所引起,它屬於黃熱病毒科的正股單鏈RNA病毒,會造成的病症可從無症狀、較輕微的登革熱到嚴重危及生命的登革出血熱以及登革休克症候群。儘管目前已有數個國家在使用減毒登革疫苗Dengvaxia,但此疫苗對於登革病毒整體的效能依然存在風險。我們實驗室先前研究顯示,登革病毒的非結構性蛋白1 (NS1) 中的C端區域會誘發導致內皮細胞受損和血小板功能障礙的交叉反應性自身抗體。因此,我們將此區域利用日本腦炎病毒 (JEV) 的相同區域進行代替並產生名為DJ NS1的嵌合蛋白。先前研究指出,給予高分子奈米包裹DJ NS1蛋白複合物相較於DJ NS1蛋白添加鋁鹽的組別,更能誘導小鼠產生較高以及較久的抗體反應,並且在小鼠經登革病毒所導致的出血時間延長症狀中提供更好的保護。除了體液免疫反應,我們發現包裹在高分子奈米複合物中的DJ NS1抗原能較有效地被樹突狀細胞(dendritic cells)攝取以及使得樹突狀細胞能較持久的活化,進而誘導對於DJ NS1抗原有反應的CD4+ 和CD8+ T細胞的活化。此外,疫苗所提供的長期保護需要持續存在的抗體以及產生免疫記憶細胞。為了評估疫苗的有效性,我們證實給予包裹DJ NS1高分子奈米複合物的小鼠增加了中央記憶T細胞和效應記憶T細胞的產生,並且從給予包裹DJ NS1高分子奈米複合物免疫的小鼠中分離出的淋巴細胞,可藉由細胞介導的細胞毒殺功能將不同血清型登革病毒感染的細胞殺死。另外,我們的實驗結果顯示,在給予高分子奈米包裹DJ NS1蛋白複合物的CD4+ T細胞在登革病毒感染所引起的出血時間延長症狀的小鼠中提供保護作用。綜合以上結果顯示,使用包裹DJ NS1高分子奈米複合物能夠誘導持久的體液和細胞免疫反應,並提供對登革病毒感染的保護作用。這些結果表明包裹DJ NS1高分子奈米複合物是具有潛力的登革疫苗候選者。
Dengue is one of the most important worldwide arboviral infections and causes millions of cases annually. It is mainly caused by dengue virus (DENV) that is a positive single-stranded RNA virus of the Flaviviridae family and results in a range of diseases from asymptomatic, mild dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome. Although the live attenuated dengue vaccine Dengvaxia is available in several countries now, the risk of the overall efficacy remains concerned. Our previous studies showed that the C-terminal region of DENV NS1 can produce cross-reactive autoantibodies leading to endothelial cell damage and platelet dysfunction. Therefore, we replaced with the similar region of JEV NS1 to generate a chimeric DJ NS1 protein. The previous studies in our laboratory demonstrated that active immunization with DJ NS1 protein plus polymer-based nanocomplexes as adjuvant induces higher and longer antibody response as well as provides better protection in DENV-induced prolonged bleeding time than DJ NS1 protein plus Alum in mice. Besides the humoral immune responses, in this study we found that DJ NS1-encapsulated nanocomplexes (DJ NS1-NCs) were efficiently taken up into dendritic cells (DCs) and induced long-lasting activation of DCs, further induced both CD4+ and CD8+ T cell activation in response to DJ NS1 antigen. An ideal vaccine to provide long-term protection requires the persistence of antibodies and the generation of immune memory cells. To evaluate the vaccine efficacy, we demonstrated that DJ NS1-NCs increased the generation of both central memory T and effector memory T cells. Moreover, lymphocytes from mice immunized with DJ NS1-NCs had capability to kill different serotypes of DENV-infected cells through cell-mediated cytotoxicity. Furthermore, our studies showed that CD4+ T cells play a protective role in DENV-induced prolonged bleeding time. Taken together, DJ NS1-NCs induce the long-lasting humoral as well as cellular immune responses and provide protective efficacy against DENV. These results indicate that DJ NS1-NCs may have great potential as dengue vaccine candidate.
Abraham, S.N., St John, A.L. (2010) Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10: 440-452.
Amorim, J.H., Diniz, M.O., Cariri, F.A., et al. (2012) Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine. 30: 837-845.
Avirutnan, P., Punyadee, N., Noisakran, S., et al. (2006) Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J. Infect. Dis. 193: 1078-1088.
Avirutnan, P., Fuchs, A., Hauhart, R.E., et al. (2010) Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J. Exp. Med. 207: 793-806.
Avirutnan, P., Hauhart, R.E., Somnuke, P., et al. (2011) Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J. Immunol. 187: 424-433.
Basu, A., Jain, P., Gangodkar, S.V., Shetty, S., Ghosh K. (2008) Dengue 2 virus inhibits in vitro megakaryocytic colony formation and induces apoptosis in thrombopoietin-inducible megakaryocytic differentiation from cord blood CD34+ cells. FEMS. Immunol. Med. Microbiol. 53: 46-51.
Beatty, P.R., Orozco, S., Killingbeck, S., et al. (2013) Dengue virus nonstructural protein 1 vaccine protects against lethal challenge in interferon ɑ/β (receptor-deficient mice (P6348). J. Immunol. 190: 182.26.
Beatty, P.R., Puerta-Guardo, H., Killingbeck, S.S., et al. (2015) Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 7: 304ra141.
Bhatt, S., Gething, P.W., Brady, O.J., et al. (2013) The global distribution and burden of dengue. Nature. 496: 504-507.
Calderon-Gonzalez, R., Tobes, R., Pareja, E., et al. (2015) Identification and characterisation of T-cell epitopes for incorporation into dendritic cell-delivered Listeria vaccines. J. Immunol. Methods. 424:111-119.
Capeding, M.R., Tran, N.H., Hadinegoro, S.R., et al. (2014) Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 384:1358-1365.
Chang, S.F., Huang, J.H., Shu, P.Y. (2012) Characteristics of dengue epidemics in Taiwan. J. Formos. Med. Assoc. 111: 297-299.
Chavez-Salinas, S., Ceballos-Olvera, I., Reyes-Del Valle, J., et al. (2008) Heat shock effect upon dengue virus replication into U937 cells. Virus. Res. 138: 111-118.
Chen, H.C., Hofman, F.M., Kung, J.T., et al. (2007) Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J. Virol. 81: 5518-5526.
Chen, C.Y. (2014) Studies on the protective effect of chimeric dengue virus nonstructural protein 1 with polymeric nanocomplex-based adjuvant in the mouse model. Master thesis of Science in Department of Microbiology and Immunology, College of Medicine, National Chen Kung University.
Chen, H.R., Chuang, Y.C., Lin, Y.S., et al. (2016) Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLoS Negl Trop Dis. 10:e0004828.
Cheng, H. J., Lin, C. F., Lei, H. Y., et al. (2009) Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies. Exp. Biol. Med. (Maywood) 234: 63-73.
Chu, Y.T., Wan, S.W., Chang, Y.C., et al. (2017) Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. Lab. Invest. doi: 10.1038.
Chuang, Y.C., Lin, Y.S., Liu, C.C., et al. (2013) Factors contributing to the disturbance of coagulation and fibrinolysis in dengue virus infection. J. Formos. Med. Assoc. 112: 12-17.
Chuang, Y.C., Lei, H.Y., Liu, H.S., et al. (2011) Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine. 54: 222e31.
de Azeredo, E.L., Monteiro, R.Q., de-Oliveira Pinto, L.M. (2015) Thrombocytopenia in dengue: Interrelationship between virus and the imbalance between coagulation and fibrinolysis and inflammatory mediators. Mediators. Inflamm. 2015: 313842.
Endy, T. P., Nisalak, A., Chunsuttitwa,t S., et al. (2004) Relationship of pre-existing dengue virus (DV) neutralizing antibody levels to viremia and disease severity in a prospective cohort study of DV infection in Thailand. J. Infect. Dis. 189: 990–1000.
Green, A.M., Beatty, P.R., Hadjilaou, A., et al. (2014) Innate immunity to dengue virus infection and subversion of antiviral responses. J. Mol. Biol. 426:1148-1160.
Guy, B. (2007) The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol. 5: 505-517.
Guy, B., Barrere, B., Malinowski, C., et al. (2011) From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine. 29: 7229-7241.
Hadinegoro, S.R., Arredondo-García, J.L., Capeding, M.R., et al. (2015) Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N. Engl. J. Med. 373:1195-1206.
Halstead, S.B. (2007). Dengue. Lancet. 370: 1644-1652.
Halstead, S.B., Mahalingam, S., Marovich, M.A., et al. (2010) Intrinsic antibody- dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet. Infect. Dis. 10: 712-722.
Harandi, A.M., Medaglini, D., Shattock, R.J. (2010) Vaccine adjuvants: a priority for vaccine research. Vaccine. 28: 2363-2366.
Heath, W.R., Carbone, F.R. (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10: 1237-1244.
Henriksen-Lacey, M., Christensen, D., Bramwell, V.W., et al. (2011) Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3β-[N-(N',N'-Dimethylaminoethane)carbomyl] cholesterol (DC-Chol), and 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses. Mol. Pharm. 8: 153-161.
Huehn, J., Siegmund, K., Hamann, A. (2005) Migration rules: functional properties of naive and effector/ memory-like regulatory T cell subsets. Curr. Top. Microbiol. Immunol. 293: 89-114.
Hunsawong, T., Sunintaboon, P., Warit, S., et al. (2015) Immunogenic properties of a BCG adjuvanted chitosan nanoparticle-based dengue vaccine in human dendritic cells. PLoS. Negl. Trop. Dis. 9: e0003958.
Ikuta, Y., Katayama, N., Wang, L., et al. (2002) Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood. 99: 3717-3724.
Jeewandara, C., Adikari, T.N., Gomes, L., et al. (2015) Functionality of dengue virus specific memory T cell responses in individuals who were hospitalized or who had mild or subclinical dengue infection. PLoS. Negl. Trop. Dis. 9: e0003673.
Kanchan, V. and Panda, A.K. (2007) Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials. 28: 5344-5357.
Kirkpatrick, B.D., Durbin, A.P., Pierce, K.K., et al. (2015) Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J. Infect. Dis. 212: 702-710.
Kirkpatrick, B.D., Whitehead, S.S., Pierce, K.K., et al. (2016) The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci. Transl. Med. 18: 330ra36.
Kunder, C.A., St John, A.L., Abraham, S.N. (2011) Mast cell modulation of the vascular and lymphatic endothelium. Blood. 118:5383-5393.
Lanzavecchia, A., and Sallusto, F. (2005) Understanding the generation and function of memory T cell subsets. Curr. Opin. Immunol. 17: 326-332.
Li, C.L. (2015) Studies on the cellular immune responses induced by chimeric dengue virus nonstructural protein 1-encapsulated nanocomplexes. Master thesis of Science in Department of Microbiology and Immunology, College of Medicine, National Chen Kung University.
Lin, C.F., Lei, H.Y., Shiau, A. L., et al. (2003) Antibodies from dengue patient sera cross‐react with endothelial cells and induce damage. J. Med. Virol. 69: 82-90.
Lin, C.F., Lei, H.Y., Yeh, T.M., et al. (2008) Patient and mouse antibodies against Dengue virus nonstructural protein 1 cross-react with platelets and cause their dysfunction or depletion. Am. J. Infect. Dis. 4: 69-75.
Liu, I.J., Chiu, C.Y., Chen, Y.C. et al. (2011) Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J. Biol. Chem. 286: 9726-9736.
Martina, B.E., Koraka, P., Osterhaus, A.D. (2009) Dengue virus pathogenesis: an integrated view. Clin. Microbiol. Rev. 22: 564-581.
Mehlhop, E., Ansarah-Sobrinho, C., Johnson, S., et al. (2007) Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. Cell. Host. Microbe. 2: 417-426.
Modhiran, N., Watterson, D., Blumenthal, A., et al. (2017) Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol. Cell. Biol. 95: 491-495.
Modis, Y., Ogata, S., Clements, D., et al. (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA. 100: 6986–6991.
Morrison, J., Aguirre, S., Fernandez-Sesma, A. (2012) Innate immunity evasion by Dengue virus. Viruses. 4: 397-413.
Mukai, Y., Yoshinaga, T., Yoshikawa, M., et al. (2011). Induction of endoplasmic reticulum-endosome fusion for antigen cross-presentation induced by poly (gamma-glutamic acid) nanoparticles. J. Immunol. 187: 6249-6255.
Mukhopadhyay, S., Kuhn, R.J., Rossmann, M.G. (2005). A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3: 13-22.
Nair-Gupta, P., Baccarini, A., Tung, N., et al. (2014) TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell. 158:506-521.
Noble, C.G., She, C.C., Chao, A.T., et al. (2012) Ligand-bound structures of the dengue virus protease reveal the active conformation. J. Virol. 86: 438 -446.
Obst, M., and Steinbuchel, A. (2004) Microbial degradation of poly (amino acid)s. Biomacromolecules. 5: 1166-1176.
Osorio, J.E., Wallace, D., Stinchcomb, D.T. (2016) A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Rev Vaccines. 15: 497-508.
Pang, T., Cardosa, M.J. Guzman, M.G. (2007) Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol. Cell. Biol. 85: 43-45.
Peek, L.J., Middaugh, C.R., Berkland, C. (2008) Nanotechnology in vaccine delivery. Adv. Drug. Deliv. Rev. 60: 915-928.
Perrie, Y., Mohammed, A.R., Kirby, D.J., et al. (2008) Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 364: 272-280.
Platanias, L.C. (2005) Mechanisms of type-I- and type-II-interferonmediated signalling. Nat. Rev. Immunol. 5: 375-386.
Plotkin, S.L., and Plotkin, S.A. (2004) A short history of vaccination. Vaccines. 5: 1-16.
Poggianella, M., Slon Campos, J.L., Chan, K.R., et al. (2015) Dengue E protein domain III-based DNA immunisation induces strong antibody responses to all four viral serotypes. PLoS. Negl .Trop. Dis. 9: e0003947.
Prestwood, T.R., Prigozhin, D.M., Sharar, K.L., et al. (2008) A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J. Virol. 82: 8411-8421.
Pryor, M.J., Rawlinson, S.M., Butcher, R.E., et al. (2007) Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic. 8:795-807.
Puerta-Guardo, H., Raya-Sandino, A., González-Mariscal, L., et al. (2013) The cytokine response of U937-derived macrophages infected through antibody-dependent enhancement of dengue virus disrupts cell apical-junction complexes and increases vascular permeability. J. Virol. 87: 7486-7501.
Puerta-Guardo, H., Glasner, D.R., Harris, E. (2016) Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLoS Pathog. 12:e1005738.
Rothman, A.L. (2004) Dengue: defining protective versus pathologic immunity. J. Clin. Invest. 113: 946-951.
Rothman, A.L. (2011). Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11: 532-543.
Sabchareon, A., Wallace, D., Sirivichayakul, C., et al. (2012) Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet. 380: 1559-1567.
Sáez-Llorens, X., Tricou, V., Yu, D., et al. (2017) Safety and immunogenicity of one versus two doses of Takeda's tetravalent dengue vaccine in children in Asia and Latin America: interim results from a phase 2, randomised, placebo-controlled study. Lancet. Infect. Dis. 17:615-625.
Sant, A.J., and McMichae,l A. (2012) Revealing the role of CD4(+) T cells in viral immunity. J. Exp. Med. 209:1391-1395.
Saw, W.G., Tria, G., Gruber, A., et al. (2015) Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution. Acta. Crystallogr. D. Biol. Crystallogr. 71: 2309-2327.
Screaton, G., Mongkolsapaya, J., Yacoub, S., et al. (2015) New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 15:745-759.
Sharma, G., Valenta, D.T., Altman, Y., et al. (2010) Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release. 47: 408-412.
Siegrist, C.A. Vaccine immunology .World Health Organization.
Sonaje, K., Chuang, E.Y., Lin, K.J., et al. (2012) Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol. Pharm. 9: 1271-1279.
St John, A.L., Rathore, A.P., Raghavan, B., et al. (2013) Contributions of mast cells and vasoactive products, leukotrienes and chymase to dengue virus-induced vascular leakage. eLife. 2: e00481.
Thaiss, C.A., Semmling, V., Franken, L., et al. (2011) Chemokines: a new dendritic cell signal for T cell activation. Front. Immunol. 2: 31.
Torchilin, V.P. (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev. 58: 1532-1555.
Treuel, L., Jiang, X., Nienhaus, G.U. (2013) New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface. 10: 20120939.
Uto, T., Wang, X., Sato, K, et al. (2007) Targeting of antigen to dendritic cells with poly (-glutamic acid) nanoparticles induces antigenspecific humoral and cellular immunity. J. Immunol. 178: 2979-2986.
Uto, T., Akagi, T., Toyama, M., et al. (2011) Comparative activity of biodegradable nanoparticles with aluminum adjuvants: antigen uptake by dendritic cells and induction of immune response in mice. Immunol. Lett. 140: 36-43.
Uto, T., Toyama, M., Nishi Y., et al. (2012) Uptake of biodegradable poly (γ-glutamic acid) nanoparticles and antigen presentation by dendritic cells in vivo. Results Immunol. 3:1-9.
Vaughn, D.W., Green, S., Kalayanarooj, S., et al. (2000) Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis. 181: 2-9.
Villar, L., Dayan, G.H., Arredondo-García, J.L., et al. (2015) Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372: 113-123.
Vogt, M.R., Moesker, B., Goudsmit, J., et al. (2009) Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step. J. Virol. 83: 6494-6507.
Wan, S.W., Lin, C.F, Chen, M.C., et al. (2008) C-terminal region of dengue virus nonstructural protein 1 is involved in endothelial cell cross-reactivity via molecular mimicry. Am. J. Infect. Dis. 4: 85-91.
Wan, S.W., Lin, C.F., Wang, S., et al. (2013a) Current progress in dengue vaccines. J. Biomed. Sci. 20: 37.
Wan, S.W., Lin, C.F., Yeh, T.M., et al. (2013b) Autoimmunity in dengue pathogenesis. J. Formos. Med. Assoc. 112: 3-11.
Wan, S.W., Lu, Y.T., Huang, C.H., et al. (2014) Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS. One. 9: e92495.
Wang, S.F., Chang, K., Loh, E.W., et al. (2016) Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg. Microbes. Infect. 5: e123.
Weaver, S.C., and Vasilakis, N. (2009) Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect. Genet. Evol. 9:523-540.
Weiskopf, D., Angelo, M.A., de Azeredo, E.L., et al. (2013) Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl. Acad. Sci. U. S. A. 110: E2046–E2053.
Weiskopf, D., Bangs, D.J., Sidney, J., et al. (2015) Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc. Natl. Acad. Sci. U. S. A. 112: E4256–E4263.
Wen, Z.S., Xu, Y.L., Zou, X.T., et al. (2011) Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar. Drugs. 9: 1038-1055.
Whitehorn, J., and Simmons, C.P. (2011) The pathogenesis of dengue. Vaccine. 29: 7221-7228.
WHO. (2012) Global strategy for dengue prevention and control.
WHO. (2009) Dengue: guidelines for diagnosis, treatment, prevention and control.
Wu, R.H., Tsai, M.H., Tsai, K.N., et al. (2017) Mutagenesis of dengue virus protein NS2A revealed a novel domain responsible for virus-induced cytopathic effect and interactions between NS2A and NS2B transmembrane segments. J. Virol. 91: e01836-16.
Wu-Hsieh, B.A., Yen, Y.T., and Chen, H.C. (2009) Dengue hemorrhage in a mouse model. Ann. N. Y. Acad. Sci. 1171 Suppl 1: E42-47.
Xie, X., Zou, J., Puttikhunt, C., et al. (2015) Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol. 89: 1298-1313.
Yen, Y.T., Chen, H.C., Lin, Y.D., et al. (2008) Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J. Virol. 82: 12312-12324.
Youn, S., Li, T., McCune, B.T., et al. (2012) Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus. J. Virol. 86: 7360-7371.
Yu, C.Y., Chang, T.H., Liang, J.J., et al. (2012) Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS. Pathog. 8: e1002780.
Zellweger, R.M., Miller, R., Eddy, W.E., et al. (2013) Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLoS. Pathog. 9: e1003723.
Zellweger, R.M., Tang, W.W., Eddy, W.E., et al. (2015) CD8+ T cells can mediate short-term protection against heterotypic dengue virus reinfection in mice. J. Virol. 89: 6494-6505.
Zinkernagel, R.M. and Doherty, P.C. (1975) H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D. J. Exp. Med. 141: 1427-1436.
Zompi, S., Santich, B.H., Beatty, P.R. et al. (2012) Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells. J. Immunol. 188: 404-416.