簡易檢索 / 詳目顯示

研究生: 呂佳原
Lu, Jia-yuan
論文名稱: 梯形模糊輸出迴歸模式之建立
Development of a linear regression model for trapezoidal fuzzy output data
指導教授: 潘南飛
Pan, Nang-fei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 最小平方法梯型模糊數模糊迴歸分析線性規劃法
外文關鍵詞: least-squares approach, trapezoidal fuzzy number, fuzzy regression model, linear- programming method
相關次數: 點閱:117下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統迴歸分析只適用於處理調查資料或變數為明確的數值,模糊迴歸分析則可處理主觀與非明確的資料。現存可處理因變數為梯形模糊數的模糊迴歸模式甚少,且存在計算困難之問題,以及尚無可衡量模式配適度方法。因此,本研究提出一可處理非對稱梯形模糊輸出資料的迴歸分析法,迴歸式的建立係以線性規劃法求解模糊度最小而得。此外,本研究亦提出一分析方法來衡量其模式配適的品質。最後,本研究以橋樑伸縮縫狀況為案例,來探討模式的實用性與預測伸縮縫狀況。

    Ordinary regression techniques only suit to deal with crisp inspected data. Fuzzy regression model can solve subjective and non-crisp data. There are fewer linear regression model talking about trapezoidal fuzzy data, and their shortage are hardly calculated. There does not exist a model to test goodness of fit of the result of regression model. Therefore, this study presents a model to solve asymmetry trapezoidal fuzzy output data with minimizing vagueness by linear- programming method. Besides , this study built up a method to test the goodness of fit of the result of estimation. At last, this study show an application of linear regression analysis with trapezoidal fuzzy data, called prediction of condition of bridge deck expansion joint.

    目錄 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍與限制 3 1.3 論文架構 3 第二章 文獻與理論背景回顧 4 2.1 文獻回顧 4 2.2 理論背景 8 2.2.1 傳統線性迴歸分析 8 2.2.2 明確集合與模糊集合 8 2.2.3 擴展定理 9 2.2.4 α截集 9 2.2.5 模糊數 9 2.2.6 Ishibuchi與Tanaka的模糊迴歸分析法 12 2.2.7 D’Urso的模糊迴歸分析法 15 2.3 台灣現行的DERU橋樑檢測法 17 2.3.1 橋樑劣化分析之文獻回顧 19 第三章 梯形模糊線性迴歸模式之建立 21 3.1 基本原理 21 3.2 模式之建立 25 3.3 範例分析 29 3.4 小結 34 第四章 迴歸模式品質之衡量 35 4.1 適合度分析 35 4.2 範例分析 41 4.3 小結 42 第五章 案例探討 43 5.1 背景描述 43 5.2 分析結果與討論 48 第六章 結論與建議 59 6.1 結論 59 6.2 建議 59 參 考 文 獻 61 附錄一 66 附錄二 70 自述 76

    參 考 文 獻
    一、中文部份(按筆劃多寡排列)
    [1] 中央大學橋樑工程研究中心,1997,混凝土橋樑檢查手冊,台灣省交通處公路局,桃園。
    [2] 王安培與林正道,2001,“土石流危險度之模糊迴歸分析和綜合評判”,第十二屆水利工程研討會,台南。
    [3] 李有豐與林安彥,2000,橋樑檢測評估與補強,全華科技圖書,台北。
    [4] 李允中、王小璠與蘇木春,2003,模糊理論及其應用,全華科技圖書,台北。
    [5] 林志棟、曾國雄、張家瑞與洪境聰,2001,“以模糊迴歸方法建立柔性路面現況服務能力指標”,第十一屆鋪面工程學術研討會,高雄。
    [6] 林登淵,2004,「公路橋樑伸縮縫損壞調查與相關影響因素之研究」,朝陽科技大學營建工程研究所,碩士論文。
    [7] 林永基,2006,「高速公路伸縮縫噪音及跳動研究」,逢甲大學土木工程學系,碩士論文。
    [8] 周聰佑與梁金樹,2002,“模糊迴歸模式及其在航空旅客運量預測應用之研究”,技術學刊,第十七卷,第一期。
    [9] 陳維東、潘南飛、劉述舜、盧順逸,(2005),「應用迴歸分析預測道路工程之最低標價」,技術學刊第20卷第4期,第387至397頁。
    [10] 許文政、黃榮堯,(2004),「橋樑生命週期成本評估-構件劣化預測模式之研究」,第八屆營建工程與管理研究成果聯合發表會,台北。
    [11] 曹銳勤,1999,模糊迴歸模式之建構與分析,國立交通大學,工管系,博士論文。
    [12] 黃冠智,2006,模糊迴歸模式之建立及其應用,國立高雄應用科技大學,土木系,碩士論文。
    [13] 黃盈樺,2005,”運用K最近鄰居分類法預測混凝土橋面板之劣化”,2005電子計算機於土木水利工程應用研討會,台南。
    [14] 黃乾全、蕭景祥、董貞吟與劉玉文,(2000),「營造業勞工墜落事故相關因素之研究」,勞工安全衛生研究季刊,第八卷,第四期。
    [15] 黃榮堯與許鎧麟,2003,橋樑生命週期成本評估方法與結構使用年限之建立(2/2),財團法人台灣營建研究院計畫報告。
    [16] 潘南飛,李思賢,(2004),「傳統迴歸與模糊迴歸在營建工程預測應用之比較」,營建管理季刊,第59期,第54-58頁。
    [17] 潘南飛與黃冠智,2005,“橋梁劣化之迴歸分析”,2005電子計算機於土木工程應用之研討會,台南。
    [18] 潘南飛,(2006),「模糊迴歸在工程應用之探討」,技術學刊,第21卷第2 期,第1至11頁。
    [19] 潘南飛,(2006),「土木與建築構造物發生倒塌之肇因分析」,營建管理季刊第66期,第7至13頁。
    [20] 蘇暉傑,(2003),「既有橋梁損壞相關影響因素之研究-以台中縣為例」,逢甲大學,交管系,碩士論文。
    [21] 鐘金龍與曾惠斌,2002,”橋樑延壽對策模式之架構建立”,第六屆營建工程與管理研究成果聯合發表會,高雄。
    二、英文部份(按字母順序排列)
    [22] Chen, S.J. and Hwang, C.L., 1992, Fuzzy Multiple Attribute Decision Making, Springer-Verlag, New York.
    [23] Chang, P.T. and Lee, E.S., 1996, “A generalized fuzzy weighted least-squares regression”, Fuzzy Sets and Systems, Vol. 82, pp.289-298.
    [24] Chang, Y.H. and Ayyub, B. M., 2001, “Fuzzy regression model─a comparative assessment”, Fuzzy Sets and Systems, Vol. 119, pp. 187-203.
    [25] Chang, L.M. and Lee, Y.J., 2002, “Evaluation of performance of bridge deck expansion joints”, Journal of Performance of Constructed Facilities, Vol.16, No.1, pp.3-9.
    [26] Chang, Y.H., 2001, “Hybrid fuzzy least-squares regression analysis and its reliability measures”, Fuzzy Sets and Systems, Vol. 119, pp. 225-246.
    [27] Diamond, P., 1988, “Fuzzy least squares”, Information Sciences, Vol. 46, pp.141-157.
    [28] Diamond, P. and Korner, R., 1997, “Extended fuzzy linear models and least-squares estimates ”, Computers and Mathematics with Applications, Vol. 33, pp.15-32.
    [29] D’Urso, P. and Gastaldi, T., 2000. “A least-squares approach to fuzzy linear regression analysis”, Computational Statistics and Data Analysis, Vol. 34, pp. 427-440.
    [30] D’Urso, P. and Gastaldi, T., 2002, “An “orderwise ” polynomial regression procedure for fuzzy data”, Fuzzy Sets and Systems, Vol. 130, pp. 1-19.
    [31] D’Urso, P., 2003, “Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data”, Computational Statistics and Data Analysis, Vol. 42, pp. 47-72.
    [32] Liang, M.T., Chu, T.B., Tsao, W.H. and Yeh, C.J., 2006, “Determining the repair ranking of existing RC bridges using fuzzy synthetic evaluation method” Journal of Chinese Institute of Engineers, Vol. 29, No. 1, pp.37~50.
    [33] Faraway, J.J., 2005, Linear Models with R, Compman and Hall/CRC Company, New York.
    [34] Huang, Y.U., 2003, Modeling deterioration of concrete bridge decks using neural network, Ph.D. Dissertation, University of Wisconsin, Madison.
    [35] Huang, Y.U., 2004, “Analysis of life-cycle maintenance strategies for concrete bridge decks”, Journal of Bridge Engineering, ASCE, Vol.9, No.3, pp.250-258.
    [36] Ishibuchi, H. and Tanaka, H., 1990, “Identification of fuzzy parameters by interval regression models”, Electronics and Communications in Japan, Part 3, Vol.73, No. 12, pp. 19-27.
    [37] Jiang, Y., Saito, M. and Sinha, K.C., 1988, “Bridge performance prediction model using the markov chain”, Transportation Research Record, 1180, PP. 25-35.
    [38] Kim, B. and Bishu, R.R., 1998, “Evaluation of fuzzy linear regression models by comparing membership functions”, Fuzzy Sets and Systems, Vol. 100, pp. 343-352.
    [39] Kao, C. and Chyu, C.L., 2002, “A fuzzy linear regression model with better explanatory power”, Fuzzy Sets and Systems, Vol.126, pp.401-409.
    [40] McFadden, Daniel; Mas-Colell, Andreu; Mantel, Rolf; Richter, Marcel K,1974,” A Characterization of Community Excess Demand Functions” , Journal of Economic Theory, Dec74, Vol. 9 Issue 4, p361-374, 14p, 4 graphs.
    [41] Mauch, S.M. and Madanat, S., 2001, “Semiparametric hazard models of reinforced concrete bridge deck deterioration”, Journal of Infrastructure Systems, Vol. 7, No.2, pp.49-57.
    [42] Morcous, G., Lounis, Z. and Mirza, M.S., 2003, “Identification of environmental Categories for markovian deterioration models of bridge decks”, Journal of Bridge Engineering, ASCE, Vol.8, No.6, pp.353-361.
    [43] Ma, M., Friedman, M. and Kandel, A., 1997, “General fuzzy least squares”, Fuzzy Sets and Systems, Vol.88, pp.107-118.
    [44] Neter, J., Kutner, M.H., Nachtsheim, C.J. and Wasserman, W., 1999, Applied Linear Regression Models, McGraw-Hill, New York.
    [45] Pan, N.F., 2006, “Forecasting bridge deck conditions using fuzzy regression analysis”, Journal of the Chinese Institute of Engineers (Revising).
    [46] Redden, D. and Woodall, W., 1994, “Properties of certain fuzzy regression methods”, Fuzzy Sets and systems, Vol. 64, pp.361-375.
    [47] Savic, D.A. and Pedrycz, W., 1991, “Evaluation of fuzzy linear regression models”, Fuzzy Sets and Systems, Vol. 39, pp. 51-63.
    [48] Sakawa, M. and Yano, H., 1992, “Multiobjective fuzzy linear regression analysis for fuzzy input-output data”, Fuzzy Sets and Systems, Vol. 47, pp. 173-181.
    [49] Sakawa, M. and Yano, H., 1992, “Fuzzy linear regression analysis for fuzzy input-output data”, Information Sciences, Vol. 63, pp. 191-206.
    [50] Tanaka, H., Uejima, S. and Asai, K., 1982, “Linear regression analysis with fuzzy model”, IEEE Transactions on System, Man and Cybernetics, Vol.12, No.6, pp. 903-907.
    [51] Tanaka, H. and Watada, J., 1988, “Possibilistic linear systems and their application to the linear regression model”, Fuzzy Sets and Systems, Vol. 27, pp. 275-289.
    [52] Wang, H.F., and Tasur, R.C., 2000, “Resolution of fuzzy regression model”, European journal of operational research, Vol. 126, pp. 637-650.
    [53] Wu, H.C., 2003, “Linear regression analysis for fuzzy input and output data using the extension principle”, Computers & Mathematics with Application, Vol. 45, pp. 1849-1859.
    [54] Yang, M.S. and Lin, T.S., 2002. “Fuzzy least-squares linear regression analysis for fuzzy input-output data”, Fuzzy Sets and Systems, Vol. 126, pp. 389-399.
    [55] Zimmermann, H. J.,1991, Fuzzy Set Theory and its Applications-2nd ed, Kluwer Academic, Boston.
    [56] Zadeh, L.A., 1965, “Fuzzy sets”, Information and Control, Vol. 8, pp.338-353.
    [57] Zadeh, L.A., 1978, “Fuzzy sets as a basis for theory of possibility”, Fuzzy Sets and Systems, Vol. 1, pp. 3-28.

    下載圖示 校內:2008-09-13公開
    校外:2008-09-13公開
    QR CODE