| 研究生: |
陳弘凱 Chen, Hong-Kai |
|---|---|
| 論文名稱: |
以第一原理計算探討電池、熱催化與上轉換材料電子性質與反應機制之影響 First-Principles Calculations Unveil Deeper Insights into Battery Materials, Thermocatalysts, and Upconversion Materials by Illuminating Electronic Properties and Reaction Mechanisms |
| 指導教授: |
田弘康
Tian, Hong-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 第一計算原理 、離子電池 、乙腈 、逆水煤氣反應 、上轉化反應 |
| 外文關鍵詞: | Density functional theory, Ion-battery, Acetonitrile, Reverse water gas shift reaction, Upconversion reaction |
| 相關次數: | 點閱:66 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,理論計算模擬在科技發展中受到越來越多的關注,並被廣泛有效地應用。這種趨勢的背後是因為理論計算模擬能夠提供高度精確的預測和理解,從而加深對其內在機制的理解。這種方法的優勢在於可以避免大量的實驗測試,節省了時間和資源。本研究利用第一計算原理應用於多種常見的材料領域並探討其化學反應。
在儲能材料中,在快高電流密度條件下,鋰離子會在電極表面形成尖銳狀金屬結晶,這些枝晶可能穿透電解質隔膜,造成電池內部短路,導致過熱甚至起火。然而在鎂電池循環的過程中卻是出現六角形晶粒的均勻沉積。在電池循環的過程中電解液會降解形成Solid electrolyte interphase (SEI)層覆蓋在負極表面,本研究為了探討不同SEI材料是否會影響枝晶的生長,我們建立了SEI覆蓋在負極表面的模型,判斷電子能否穿過電解質,以及原子沉積模式如何影響枝晶生長。結果顯示鋰離子電池大多能讓電子穿透固態電解質,且沉積的原子更易向外延伸,而鎂離子電池的固態電解質材料則能不利於枝晶生長。
本研究同時利用第一原理計算分析熱觸媒材料,以揭示其在反應過程中的作用機制,有助於選擇最適合的實驗材料,有利於我們快速篩選出理想的觸媒。通過計算可以得知,在甲烷與氮化鎵反應形成乙腈的過程中,當我們利用HZSM-5作為觸媒擔體時,其吸附位點能夠有效降低氮化鎵的鍵能。此外,小粒徑的氮化鎵也會形成較易接收電子的表面,這有利於氮原子的還原,進而提升反應產率。除了增加產率外,當我們利用鎳原子嵌入在觸媒擔體內,會改變表面的吸附環境,使其結構難以吸附一氧化碳,增加逆水煤氣變換反應中一氧化碳的選擇率。
最後我們也有透過分析上轉化反應材料的電子性質,以觀測增加上轉化反應背後的機制,幫助我們理解在反應過程中電子的躍遷路徑,這些資訊讓我們能夠挑選出能夠有效提升上轉化效率的材料,為材料開發提供重要的資訊。
In recent years, theoretical computational simulations have gained traction and are widely used in technological advancement. These simulations, based on first principles, enable the simulation of material structure, properties, and reaction behavior, enhancing our understanding of underlying mechanisms. This study applies first principles computational simulation to common chemical reactions, particularly focusing on models with solid electrolyte interphase (SEI) coverage on negative electrode surfaces. This allows for evaluating electron penetration through the SEI and how atomic deposition patterns influence dendrite growth difficulty. Results show SEI materials from magnesium-ion batteries often inhibit dendrite growth, while those from lithium-ion batteries typically facilitate electron penetration, promoting outward atomic growth and dendrite formation during cycling. Additionally, electronic property analysis of catalyst materials reveals insights into catalyst support and particle size effects on reactions. For instance, using HZSM-5 as a catalyst support reduces the binding energy of gallium nitride in methane and gallium nitride reactions, enhancing reaction efficiency, especially with smaller gallium nitride particle sizes. Moreover, encapsulating nickel atoms within the catalyst support enhances selectivity for carbon monoxide in reverse water-gas shift reactions by hindering carbon monoxide adsorption. Furthermore, analyzing the electronic properties of materials in upconversion reactions aids in selecting materials to enhance efficiency, and guiding material development.
[1] B. Lee, E. Paek, D. Mitlin, S. W. Lee, and G. W. Woodruff, “Sodium Metal Anodes: Emerging Solutions to Dendrite Growth,” 2019, doi: 10.1021/acs.chemrev.8b00642.
[2] W. Lu, C. Xie, H. Zhang, and X. Li, “Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries,” ChemSusChem, vol. 11, no. 23, pp. 3996–4006, Dec. 2018, doi: 10.1002/CSSC.201801657.
[3] “The Promise of Calcium Batteries: Open Perspectives and Fair Comparisons,” 2021, doi: 10.1021/acsenergylett.1c00593.
[4] J. Eaves-Rathert, K. Moyer, M. Zohair, and C. L. Pint, “Kinetic- versus Diffusion-Driven Three-Dimensional Growth in Magnesium Metal Battery Anodes,” 2020, doi: 10.1016/j.joule.2020.05.007.
[5] J. Hu, Y. Li, Y. Zou, L. Lin, B. Li, and X. yan Li, “Transition metal single-atom embedded on N-doped carbon as a catalyst for peroxymonosulfate activation: A DFT study,” Chemical Engineering Journal, vol. 437, Jun. 2022, doi: 10.1016/j.cej.2022.135428.
[6] H. Chu, J. Zhao, Y. Mi, Z. Di, and L. Li, “NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices”, doi: 10.1038/s41467-019-10847-0.
[7] R. Arppe et al., “Quenching of the upconversion luminescence of NaYF 4 :Yb 3+ ,Er 3+ and NaYF 4 :Yb 3+ ,Tm 3+ nanophosphors by water: the role of the sensitizer Yb 3+ in non-radiative relaxation,” Nanoscale, vol. 7, no. 27, pp. 11746–11757, Jul. 2015, doi: 10.1039/C5NR02100F.
[8] M. S. Whittingham, “CHEMISTRY OF INTERCALATION COMPOUNDS: METAL GUESTS IN CHALCOGENIDE HOSTS.”
[9] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density,” Mater Res Bull, vol. 15, no. 6, pp. 783–789, Jun. 1980, doi: 10.1016/0025-5408(80)90012-4.
[10] “Progress in batteries and solar cells. 1990.” Cleveland, OH (United States); JEC Press Inc., Jan. 01, 1990.
[11] X.-R. Chen et al., “A Diffusion--Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium-Metal Batteries,” Angewandte Chemie International Edition, vol. 59, no. 20, pp. 7743–7747, May 2020, doi: 10.1002/ANIE.202000375.
[12] K. Vignarooban et al., “Current trends and future challenges of electrolytes for sodium-ion batteries,” Int J Hydrogen Energy, vol. 41, no. 4, pp. 2829–2846, Jan. 2016, doi: 10.1016/J.IJHYDENE.2015.12.090.
[13] M. Moshkovich, Y. Gofer, and D. Aurbach, “Investigation of the Electrochemical Windows of Aprotic Alkali Metal (Li, Na, K) Salt Solutions,” J Electrochem Soc, vol. 148, no. 4, p. E155, Apr. 2001, doi: 10.1149/1.1357316/XML.
[14] W. Zhang, Y. Liu, and Z. Guo, “Approaching high-performance potassium-ion batteries via advanced design strategies and engineering,” Sci Adv, vol. 5, no. 5, 2019, doi: 10.1126/SCIADV.AAV7412.
[15] P. Goel, D. Dobhal, and R. C. Sharma, “Aluminum–air batteries: A viability review,” J Energy Storage, vol. 28, p. 101287, Apr. 2020, doi: 10.1016/J.EST.2020.101287.
[16] X. Shan et al., “A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives,” Journal of Physical Chemistry C, vol. 125, no. 35, pp. 19060–19080, Sep. 2021, doi: 10.1021/ACS.JPCC.1C06277/ASSET/IMAGES/LARGE/JP1C06277_0007.JPEG.
[17] D. Aurbach et al., “Prototype systems for rechargeable magnesium batteries,” Nature 2000 407:6805, vol. 407, no. 6805, pp. 724–727, Oct. 2000, doi: 10.1038/35037553.
[18] M. Matsui, “Study on electrochemically deposited Mg metal,” J Power Sources, vol. 196, no. 16, pp. 7048–7055, Aug. 2011, doi: 10.1016/J.JPOWSOUR.2010.11.141.
[19] C. Ling, D. Banerjee, and M. Matsui, “Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology,” Electrochim Acta, vol. 76, pp. 270–274, Aug. 2012, doi: 10.1016/J.ELECTACTA.2012.05.001.
[20] A. Hagopian, M. L. Doublet, and J. S. Filhol, “Thermodynamic origin of dendrite growth in metal anode batteries,” Energy Environ Sci, vol. 13, no. 12, pp. 5186–5197, Dec. 2020, doi: 10.1039/D0EE02665D.
[21] Z. Liu et al., “Dendrite-free Lithium Based on Lessons Learned from Lithium and Magnesium Electrodeposition Morphology Simulations,” Cell Rep Phys Sci, vol. 2, no. 1, Jan. 2021, doi: 10.1016/j.xcrp.2020.100294.
[22] M. Jäckle, K. Helmbrecht, M. Smits, D. Stottmeister, and A. Groß, “Self-diffusion barriers: possible descriptors for dendrite growth in batteries?,” Energy Environ Sci, vol. 11, no. 12, pp. 3400–3407, Dec. 2018, doi: 10.1039/C8EE01448E.
[23] A. Hagopian, D. Kopač, J. S. Filhol, and A. Kopač Lautar, “Morphology evolution and dendrite growth in Li- and Mg-metal batteries: A potential dependent thermodynamic and kinetic multiscale ab initio study,” Electrochim Acta, vol. 353, p. 136493, Sep. 2020, doi: 10.1016/J.ELECTACTA.2020.136493.
[24] I. T. Røe, S. M. Selbach, and S. K. Schnell, “Crystal Structure Influences Migration along Li and Mg Surfaces,” Journal of Physical Chemistry Letters, vol. 11, no. 8, pp. 2891–2895, Apr. 2020, doi: 10.1021/ACS.JPCLETT.0C00819/ASSET/IMAGES/LARGE/JZ0C00819_0004.JPEG.
[25] Y. Xu et al., “Promoting Mechanistic Understanding of Lithium Deposition and Solid-Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives,” Adv Energy Mater, vol. 12, no. 19, p. 2200398, May 2022, doi: 10.1002/AENM.202200398.
[26] J. B. Goodenough and Y. Kim, “Challenges for rechargeable Li batteries,” Chemistry of Materials, vol. 22, no. 3, pp. 587–603, Feb. 2010, doi: 10.1021/CM901452Z/ASSET/IMAGES/LARGE/CM-2009-01452Z_0018.JPEG.
[27] A. Kushima et al., “Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams,” 2016, doi: 10.1016/j.nanoen.2016.12.001.
[28] M. Nojabaee, D. Kopljar, N. Wagner, and K. A. Friedrich, “Understanding the Nature of Solid-Electrolyte Interphase on Lithium Metal in Liquid Electrolytes: A Review on Growth, Properties, and Application-Related Challenges,” Batter Supercaps, vol. 4, no. 6, pp. 909–922, Jun. 2021, doi: 10.1002/BATT.202000258.
[29] Y. X. Lin, Z. Liu, K. Leung, L. Q. Chen, P. Lu, and Y. Qi, “Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components,” J Power Sources, vol. 309, pp. 221–230, Mar. 2016, doi: 10.1016/J.JPOWSOUR.2016.01.078.
[30] N. Qin et al., “Over-Potential Tailored Thin and Dense Lithium Carbonate Growth in Solid Electrolyte Interphase for Advanced Lithium Ion Batteries,” Adv Energy Mater, vol. 12, no. 15, p. 2103402, Apr. 2022, doi: 10.1002/AENM.202103402.
[31] B. Han et al., “Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy,” Advanced Materials, vol. 33, no. 22, p. 2100404, Jun. 2021, doi: 10.1002/ADMA.202100404.
[32] J. Shim, R. Kostecki, T. Richardson, X. Song, and K. A. Striebel, “Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature,” J Power Sources, vol. 112, no. 1, pp. 222–230, Oct. 2002, doi: 10.1016/S0378-7753(02)00363-4.
[33] Y. Chen et al., “Origin of dendrite-free lithium deposition in concentrated electrolytes,” Nature Communications 2023 14:1, vol. 14, no. 1, pp. 1–12, May 2023, doi: 10.1038/s41467-023-38387-8.
[34] P. Lu, C. Li, E. W. Schneider, and S. J. Harris, “Chemistry, impedance, and morphology evolution in solid electrolyte interphase films during formation in lithium ion batteries,” Journal of Physical Chemistry C, vol. 118, no. 2, pp. 896–903, Jan. 2014, doi: 10.1021/JP4111019/ASSET/IMAGES/LARGE/JP-2013-111019_0012.JPEG.
[35] K. W. Schroder, A. G. Dylla, S. J. Harris, L. J. Webb, and K. J. Stevenson, “Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries,” ACS Appl Mater Interfaces, vol. 6, no. 23, pp. 21510–21524, Dec. 2014, doi: 10.1021/AM506517J/SUPPL_FILE/AM506517J_SI_001.PDF.
[36] D. E. Galvez-Aranda and J. M. Seminario, “Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth You may also like Ab Initio Study of the Interface of the Solid-State Electrolyte Li 9 N 2 Cl 3 with a Li-Metal Electrode,” J. Electrochem. Soc, vol. 163, p. 592, 2016, doi: 10.1149/2.0151605jes.
[37] J. Zhang et al., “The origin of anode–electrolyte interfacial passivation in rechargeable Mg-metal batteries,” Energy Environ Sci, vol. 16, no. 3, pp. 1111–1124, Mar. 2023, doi: 10.1039/D2EE03270H.
[38] F. Liu et al., “Recent advances based on Mg anodes and their interfacial modulation in Mg batteries,” Journal of Magnesium and Alloys, vol. 10, no. 10, pp. 2699–2716, Oct. 2022, doi: 10.1016/J.JMA.2022.09.004.
[39] A. Das et al., “Prospects for magnesium ion batteries: A compreshensive materials review,” Coord Chem Rev, vol. 502, p. 215593, Mar. 2024, doi: 10.1016/J.CCR.2023.215593.
[40] R. Deivanayagam, B. J. Ingram, and R. Shahbazian-Yassar, “Progress in development of electrolytes for magnesium batteries,” Energy Storage Mater, vol. 21, pp. 136–153, Sep. 2019, doi: 10.1016/J.ENSM.2019.05.028.
[41] B. Li et al., “Kinetic surface control for improved magnesium-electrolyte interfaces for magnesium ion batteries,” Energy Storage Mater, vol. 22, pp. 96–104, Nov. 2019, doi: 10.1016/J.ENSM.2019.06.035.
[42] P. Saha, M. K. Datta, O. I. Velikokhatnyi, A. Manivannan, D. Alman, and P. N. Kumta, “Rechargeable magnesium battery: Current status and key challenges for the future,” Prog Mater Sci, vol. 66, pp. 1–86, Oct. 2014, doi: 10.1016/J.PMATSCI.2014.04.001.
[43] F. Ayari et al., “Effect of the chromium precursor nature on the physicochemical and catalytic properties of Cr–ZSM-5 catalysts: Application to the ammoxidation of ethylene,” J Mol Catal A Chem, vol. 339, no. 1–2, pp. 8–16, Apr. 2011, doi: 10.1016/J.MOLCATA.2011.02.012.
[44] Y. Zhang et al., “Direct conversion of cellulose and raw biomass to acetonitrile by catalytic fast pyrolysis in ammonia,” Green Chemistry, vol. 21, no. 4, pp. 812–820, Feb. 2019, doi: 10.1039/C8GC03354D.
[45] X. Zhang, Z. Yuan, Q. Yao, Y. Zhang, and Y. Fu, “Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile,” Bioresour Technol, vol. 290, p. 121800, Oct. 2019, doi: 10.1016/J.BIORTECH.2019.121800.
[46] K. Trangwachirachai et al., “Reduction of supported GaN and its application in methane conversion,” Mater Today Chem, vol. 30, p. 101500, Jun. 2023, doi: 10.1016/J.MTCHEM.2023.101500.
[47] A. Daisley and J. S. J. Hargreaves, “Metal nitrides, the Mars-van Krevelen mechanism and heterogeneously catalysed ammonia synthesis,” Catal Today, vol. 423, p. 113874, Nov. 2023, doi: 10.1016/J.CATTOD.2022.08.016.
[48] J. Murali et al., “Evaluation of Domestic Cookstove Technologies Implemented across the World to Identify Possible Options for Clean and Efficient Cooking Solutions,” 2013. [Online]. Available: https://www.researchgate.net/publication/260175075
[49] C. Vogt et al., “Unravelling structure sensitivity in CO2 hydrogenation over nickel,” Nature Catalysis 2017 1:2, vol. 1, no. 2, pp. 127–134, Jan. 2018, doi: 10.1038/s41929-017-0016-y.
[50] C. H. Chen et al., “Reversal of methanation-oriented to RWGS-oriented Ni/SiO 2 catalysts by the exsolution of Ni 2+ confined in silicalite-1,” Green Chemistry, vol. 25, no. 19, pp. 7582–7597, Oct. 2023, doi: 10.1039/D3GC02399K.
[51] C. Lin, M. T. Berry, R. Anderson, S. Smith, and P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chemistry of Materials, vol. 21, no. 14, pp. 3406–3413, Jul. 2009, doi: 10.1021/cm901094m.
[52] J. Zhang, C. M. Shade, D. A. Chengelis, and S. Petoud, “A strategy to protect and sensitize near-infrared luminescent Nd 3+ and Yb3+: Organic tropolonate ligands for the sensitization of Ln3+-doped NaYF4 nanocrystals,” J Am Chem Soc, vol. 129, no. 48, pp. 14834–14835, Dec. 2007, doi: 10.1021/JA074564F/SUPPL_FILE/JA074564FSI20071012_072715.PDF.
[53] A. Beeby et al., “Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states,” Journal of the Chemical Society, Perkin Transactions 2, vol. 0, no. 3, pp. 493–504, Jan. 1999, doi: 10.1039/A808692C.
[54] X. Wu et al., “Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications,” 2016, doi: 10.1021/acsnano.5b06383.
[55] J. Zhang, C. M. Shade, D. A. Chengelis, and S. Phane Petoud, “A Strategy to Protect and Sensitize Near-Infrared Luminescent Nd 3+ and Yb 3+ : Organic Tropolonate Ligands for the Sensitization of Ln 3+-Doped NaYF 4 Nanocrystals,” J. AM. CHEM. SOC, vol. 129, 2007, doi: 10.1021/ja074564f.
[56] M. Saboktakin et al., “Metal-Enhanced Upconversion Luminescence Tunable through Metal NanoparticleÀNanophosphor Separation,” vol. 09, p. 49, 2024, doi: 10.1021/nn302466r.
[57] E. Schrodinger, “P H YSICAL REVIEW AN UNDULATORY THEORY OF THE MECHANICS OF ATOMS AND MOLECULES.”
[58] J. C. Slater, “A Simplification of the Hartree-Fock Method,” Physical Review, vol. 81, no. 3, p. 385, Feb. 1951, doi: 10.1103/PhysRev.81.385.
[59] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3B, p. B864, Nov. 1964, doi: 10.1103/PHYSREV.136.B864/FIGURE/1/THUMB.
[60] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4A, p. A1133, Nov. 1965, doi: 10.1103/PHYSREV.140.A1133/FIGURE/1/THUMB.
[61] E. O. Kane, “Thomas-Fermi Approach to Impure Semiconductor Band Structure,” Physical Review, vol. 131, no. 1, p. 79, Jul. 1963, doi: 10.1103/PhysRev.131.79.
[62] J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Phys Rev B, vol. 33, no. 12, p. 8800, Jun. 1986, doi: 10.1103/PhysRevB.33.8800.
[63] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys Rev B, vol. 45, no. 23, p. 13244, Jun. 1992, doi: 10.1103/PhysRevB.45.13244.
[64] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys Rev Lett, vol. 77, no. 18, p. 3865, Oct. 1996, doi: 10.1103/PhysRevLett.77.3865.
[65] B. Miehlich, A. Savin, H. Stoll, and H. Preuss, “Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr,” Chem Phys Lett, vol. 157, no. 3, pp. 200–206, May 1989, doi: 10.1016/0009-2614(89)87234-3.
[66] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids,” Phys Rev Lett, vol. 91, no. 14, p. 146401, Sep. 2003, doi: 10.1103/PHYSREVLETT.91.146401/FIGURES/1/MEDIUM.
[67] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, “Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators,” Phys Rev B, vol. 52, no. 8, p. R5467, Aug. 1995, doi: 10.1103/PhysRevB.52.R5467.
[68] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study,” Phys Rev B, vol. 57, no. 3, p. 1505, Jan. 1998, doi: 10.1103/PhysRevB.57.1505.
[69] F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, and G. Ceder, “First-principles prediction of redox potentials in transition-metal compounds with LDA + U,” Phys Rev B Condens Matter Mater Phys, vol. 70, no. 23, pp. 1–8, Dec. 2004, doi: 10.1103/PHYSREVB.70.235121/FIGURES/6/MEDIUM.
[70] H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, “CALYPSO structure prediction method and its wide application,” Comput Mater Sci, vol. 112, pp. 406–415, Feb. 2016, doi: 10.1016/J.COMMATSCI.2015.09.037.
[71] Q. Tong et al., “The CALYPSO methodology for structure prediction*,” Chinese Physics B, vol. 28, no. 10, p. 106105, Oct. 2019, doi: 10.1088/1674-1056/AB4174.
[72] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.
[73] B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, and Y. Ma, “Interface structure prediction via CALYPSO method,” Sci Bull (Beijing), vol. 64, no. 5, pp. 301–309, Mar. 2019, doi: 10.1016/J.SCIB.2019.02.009.
[74] D. Stradi, L. Jelver, S. Smidstrup, and K. Stokbro, “Method for determining optimal supercell representation of interfaces,” Journal of Physics: Condensed Matter, vol. 29, no. 18, p. 185901, Mar. 2017, doi: 10.1088/1361-648X/AA66F3.
[75] R. F. W. Bader and P. L. A. Popelier, “Atomic theorems,” Int J Quantum Chem, vol. 45, no. 2, pp. 189–207, Jan. 1993, doi: 10.1002/QUA.560450206.
[76] G. Henkelman, A. Arnaldsson, and H. Jónsson, “A fast and robust algorithm for Bader decomposition of charge density,” Comput Mater Sci, vol. 36, no. 3, pp. 354–360, Jun. 2006, doi: 10.1016/J.COMMATSCI.2005.04.010.
[77] S. L. Koch, B. J. Morgan, S. Passerini, and G. Teobaldi, “Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes,” 2015, doi: 10.1016/j.jpowsour.2015.07.027.
[78] H. Chu, H. Huang, and J. Wang, “Clustering on Magnesium Surfaces-Formation and Diffusion Energies”, doi: 10.1038/s41598-017-05366-1.
[79] M. M. Islam and T. Bredow, “Density Functional Theory Study for the Stability and Ionic Conductivity of Li 2 O Surfaces”, doi: 10.1021/jp807048p.
[80] Y.-X. Chen and P. Kaghazchi, “Metalization of Li 2 S particle surfaces in Li-S batteries †,” Nanoscale, vol. 6, pp. 13391–13395, 2014, doi: 10.1039/c4nr03428g.
[81] S. T. Lam, Q.-J. Li, R. Ballinger, C. Forsberg, and J. Li, “Modeling LiF and FLiBe Molten Salts with Robust Neural Network Interatomic Potential,” 2021, doi: 10.1021/acsami.1c00604.
[82] W. Cao et al., “In situ generation of Li 3 N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries,” 2022, doi: 10.1016/j.jechem.2022.09.025.
[83] Z. Ahmad, V. Venturi, H. Hafiz, and V. Viswanathan, “Interfaces in Solid Electrolyte Interphase: Implications for Lithium-Ion Batteries,” J. Phys. Chem. C, vol. 125, p. 45, 2021, doi: 10.1021/acs.jpcc.1c00867.
[84] M. A. Manae, L. Dheer, S. Rai, S. Shetty, and U. V Waghmare, “Activation of CO 2 and CH 4 on MgO surfaces: mechanistic insights from first-principles theory †,” Phys. Chem. Chem. Phys, vol. 24, p. 1415, 2022, doi: 10.1039/d1cp04152e.
[85] S. Wu, T. Tan, H. L. Senevirathna, and P. Wu, “Polarization of CO 2 for improved CO 2 adsorption by MgO and Mg(OH) 2,” 2021, doi: 10.1016/j.apsusc.2021.150187.
[86] R. Credendino, V. Busico, M. Causà, V. Barone, P. H. M. Budzelaar, and C. Zicovich-Wilson, “Periodic DFT modeling of bulk and surface properties of MgCl 2 w”, doi: 10.1039/b905676a.
[87] S. Grimme, “Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction,” J Comput Chem, vol. 27, pp. 1787–1799, 2006, doi: 10.1002/jcc.20495.
[88] Y. Jia et al., “Elimination of the internal electrostatic field in two-dimensional GaN-based semiconductors,” npj 2D Materials and Applications 2020 4:1, vol. 4, no. 1, pp. 1–7, Aug. 2020, doi: 10.1038/s41699-020-00165-1.
[89] C. M. Nguyen, M. F. Reyniers, and G. B. Marin, “Theoretical study of the adsorption of the butanol isomers in H-ZSM-5,” Journal of Physical Chemistry C, vol. 115, no. 17, pp. 8658–8669, May 2011, doi: 10.1021/JP111698B/SUPPL_FILE/JP111698B_SI_001.PDF.
[90] C. E. Hernandez-Tamargo, A. Roldan, and N. H. De Leeuw, “Density functional theory study of the zeolite-mediated tautomerization of phenol and catechol,” Molecular Catalysis, vol. 433, pp. 334–345, 2017, doi: 10.1016/j.mcat.2016.12.020.
[91] K. Dutta, L. Li, P. Gupta, D. Pacheco Gutierrez, and J. Kopyscinski, “Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor,” 2017, doi: 10.1016/j.catcom.2017.12.005.
[92] R. Sun, G. Yang, F. Wang, G. Chu, N. Lu, and X. Shen, “A theoretical study on the metal contacts of monolayer gallium nitride (GaN),” 2018, doi: 10.1016/j.mssp.2018.05.002.
[93] V. Chaudhari, K. Dutta, C. J. Li, and J. Kopyscinski, “Mechanistic insights of methane conversion to ethylene over gallium oxide and gallium nitride using density functional theory,” Molecular Catalysis, vol. 482, Feb. 2020, doi: 10.1016/j.mcat.2019.110606.
[94] L. Wang et al., “Boosting Upconversion Efficiency in Optically Inert Shelled Structures with Electroactive Membrane through Electron Donation,” Advanced Materials, May 2024, doi: 10.1002/adma.202404120.
[95] K. W. Park, H. S. Jang, and S. H. Cho, “Prediction of Ln3+−4f energy levels in β-NaYF4:Ln3+ and understanding of absorption behaviors,” Mater Chem Phys, vol. 275, p. 125317, Jan. 2022, doi: 10.1016/J.MATCHEMPHYS.2021.125317.
[96] B. Huang, H. Dong, K.-L. Wong, L.-D. Sun, and C.-H. Yan, “Fundamental View of Electronic Structures of β-NaYF 4 , β-NaGdF 4 , and β-NaLuF 4,” J. Phys. Chem. C, vol. 120, 2016, doi: 10.1021/acs.jpcc.6b05261.
[97] D. A. Scherlis, M. Cococcioni, P. Sit, and N. Marzari, “Simulation of Heme Using DFT + U: A Step toward Accurate Spin-State Energetics,” J Phys Chem B, vol. 111, no. 25, pp. 7384–7391, Jun. 2007, doi: 10.1021/JP070549L/ASSET/IMAGES/LARGE/JP070549LF00015.JPEG.
[98] B. Jiang and X. Wang, “Dynamic simulation of growth of NaYF 4 nanocrystals at high temperature and pressure,” 2020, doi: 10.1016/j.jallcom.2020.154785.
[99] G. Yao, Q. Meng, M. T. Berry, P. S. May, and D. S. Kilin, “Molecular dynamics in finding nonadiabatic coupling for β-NaYF4: Ce3+ nanocrystals,” Mol Phys, vol. 113, no. 4, pp. 385–391, Feb. 2015, doi: 10.1080/00268976.2014.972475.