簡易檢索 / 詳目顯示

研究生: 莊純瑋
Chuang, Chun-Wei
論文名稱: 異質磊晶成長氮化鎵微米柱陣列與氯氣輔助成長氮化銦鎵和氮化鋁鎵磊晶晶體於光電元件之應用
Heteroepitaxial Growth of GaN Microrod Arrays and Chlorine-assisted Growth of Epitaxial InGaN and AlGaN Crystals for Optoelectronic Device Applications
指導教授: 洪昭南
Hong, Franklin Chau-Nan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 203
中文關鍵詞: 氮化鎵氮化銦鎵氮化鋁鎵異質磊晶成長氯氣輔助成長
外文關鍵詞: gallium nitride (GaN), indium gallium nitride (InGaN), aluminum gallium nitride (AlGaN), heteroepitaxial growth, chlorine-assisted growth
ORCID: 0000-0002-2575-1949
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氮化鎵具有極佳的光電特性,因此氮化鎵與其衍生之化合物被視為重要的半導體材料,常用於製作發光二極體、雷射二極體、太陽能電池、光感測元件以及高功率電晶體。除此之外,一維結構具有高比表面積與低缺陷濃度之特性,已被廣泛應用於各種光電元件的製作上。而本研究將結合材料與一維結構的優點,使用異質磊晶成長的技術於矽基板上成長氮化鎵微米柱陣列,以及使用氯氣輔助成長的技術於氮化鎵微米柱陣列上成長氮化銦鎵和氮化鋁鎵磊晶晶體,並進一步製作出光電元件。
    藉由使用電漿輔助化學氣相沉積反應器,垂直排列的氮化鎵單晶微米柱陣列在矽基板上的異質磊晶成長可以被達成,且具有高的再現性。對於倒六角錐狀的氮化鎵微米柱而言,其垂直成長與其側向成長分別是透過以鎵金屬作為液態觸媒之自催化的VLS成長機制與透過VS成長機制來進行的,而且此倒六角錐狀的氮化鎵微米柱展示出在微米柱與基板之間極小的接觸面積,暗示此結構具有解決異質磊晶所產生的應力累積與較差的晶體品質之問題的潛力。另外,在電漿輔助化學氣相沉積反應器中,經由具高蒸氣壓的金屬三氯化物與氮電漿之間的反應,氮化銦鎵和氮化鋁鎵磊晶晶體的氯氣輔助成長可以在低溫600 ℃下被達成,且一樣有高的再現性。藉由在氮化銦鎵和氮化鋁鎵的成長製程中通入氫氣,可以有效地解決分別源自於材料較差以及較好的鍵結能力所產生出的不同問題,分別是氯電漿在剛成長出的氮化銦鎵晶體上之蝕刻以及不同於(002)之晶面出現的問題。在套用彎曲方程式、布拉格定律與維加德定律至410 nm的氮化銦鎵放光波長以及35.60°的氮化鋁鎵兩倍X光繞射角之後,氮化銦鎵內部的銦組成以及氮化鋁鎵內部的鋁組成可以被計算出來,分別為12.5%的銦以及66.7%的鋁。藉由使用氯氣與電漿,氮化銦鎵和氮化鋁鎵的製程溫度可以被大幅度地降低,使得低溫成長的相關應用可以蓬勃發展。此外,具有氮化銦鎵和氮化鋁鎵共存繞射峰的氮化鋁鎵/氮化銦鎵/氮化鎵的多重核殼式結構,可以經由在氮化鎵微米柱陣列上的逐層成長,被成功地製作出來。透過VS成長機制所成長出的氮化銦鎵和氮化鋁鎵磊晶晶體,具有與氮化鎵底層相同的(002)晶面,代表磊晶晶體有一致的成長取向以及氮化鋁鎵/氮化銦鎵/氮化鎵結構有極佳的晶體品質。除此之外,垂直排列的氮化鎵單晶微米柱陣列於矽基板上的異質磊晶成長以及氮化銦鎵和氮化鋁鎵磊晶晶體於氮化鎵微米柱陣列上的氯氣輔助成長可以被應用至光電元件的製作上,進而有助於元件效率的改善且可以在未來創造出很多產業上的應用。

    The heteroepitaxial growth of vertically-aligned gallium nitride (GaN) single-crystalline microrod arrays on silicon (Si) substrates was achieved with high reproducibility by using the plasma-enhanced chemical vapor deposition (PECVD) method. The morphology of inverted hexagonal GaN cone microrods with the c-axis growth direction shows extremely small contact areas between the microrods and the substrate, suggesting the potential to solve the problems of stress accumulation and poor crystalline qualities of heteroepitaxy. In addition, the chlorine-assisted growth of epitaxial indium gallium nitride (InGaN) and aluminum gallium nitride (AlGaN) crystals was achieved with high reproducibility at the low temperature of 600 ℃ in the PECVD reactor via the reaction between the metal trichlorides with high vapor pressures and nitrogen plasma. After adding hydrogen gas to the processes of InGaN and AlGaN, the problems for the etching of chlorine plasma and the appearance of other crystal planes were solved effectively. Besides, the epitaxial InGaN and AlGaN crystals have the same (002) crystal plane as bottom GaN(002), representing the consistent growth orientation of the epitaxial crystals and the great crystalline qualities of AlGaN/InGaN/GaN structures. Furthermore, the heteroepitaxial growth of GaN microrod arrays on Si substrates and the chlorine-assisted growth of epitaxial InGaN and AlGaN crystals on GaN microrod arrays can be applied to the fabrication of optoelectronic devices, which is beneficial to the improvement in the device efficiency and may bring about many industrial applications in the future.

    摘要 I 英文延伸摘要 III 誌謝 XI 目錄 XII 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 奈米科技與奈米材料 3 1-3 發光二極體(LED) 5 1-4 研究動機 10 第二章 理論基礎與文獻回顧 16 2-1 III-V族金屬氮化物 16 2-1-1 氮化鎵(GaN) 21 2-1-2 氮化銦(InN) 23 2-1-3 氮化鋁(AlN) 25 2-1-4 氮化銦鎵(InGaN) 27 2-1-5 氮化鋁鎵(AlGaN) 29 2-2 一微奈米材料之成長 31 2-2-1 觸媒輔助成長法 34 2-2-1-1 Vapor-Liquid-Solid (VLS)成長機制 34 2-2-1-2 Vapor-Solid-Solid (VSS)成長機制 37 2-2-2 無觸媒自組裝成長法 39 2-3 二極體p-n接面特性 43 2-4 氯化物輔助氮化物之成長 47 2-5 電漿原理 52 2-5-1 電漿定義與特性 52 2-5-2 介電質屏蔽放電(DBD) 58 第三章 實驗步驟與方法 61 3-1 實驗設備 61 3-1-1 爐管型電漿輔助化學氣相沉積(PECVD)系統 61 3-1-2 六段加熱區間高溫爐 62 3-1-3 石英管反應腔體 62 3-1-4 基板載台、反應前驅物容器與氣體導管 63 3-1-5 電漿電源供應器 63 3-1-6 抽氣系統與真空管件 63 3-1-7 壓力監控系統 64 3-1-8 氣體流量控制系統 64 3-1-9 系統示意圖與相對位置 65 3-2 實驗材料 66 3-2-1 基板材料 66 3-2-2 反應前驅物 67 3-2-3 實驗氣體 68 3-2-4 化學藥品 68 3-3 分析儀器 69 3-3-1 掃描式電子顯微鏡(SEM) 69 3-3-2 穿透式電子顯微鏡(TEM) 70 3-3-3 能量散佈分析儀(XEDS) 73 3-3-4 X光繞射分析儀(XRD) 74 3-3-4-1 X光繞射基本原理 74 3-3-4-2 X光繞射儀掃描模式 76 3-3-5 光激發螢光光譜(PL) 79 3-3-6 電性量測系統 85 3-4 實驗步驟 85 3-4-1 成長氮化鎵(GaN)微米柱陣列與材料分析 85 3-4-2 成長氮化銦鎵(InGaN)晶體與材料分析 88 3-4-3 成長氮化鋁鎵(AlGaN)晶體與材料分析 91 3-4-4 疊層成長氮化銦鎵(InGaN)和氮化鋁鎵(AlGaN)晶體與材料分析 95 3-4-5 光電元件的製作、量測與優化 96 3-4-5-1 元件製作 96 3-4-5-2 元件量測 100 3-4-5-3 元件優化與改善 101 3-4-5-3-1 上電極優化 101 3-4-5-3-2 下方矽(Si)基板移除 103 3-4-5-3-3 增加微米柱底層與下電極的接觸面積 104 第四章 結果與討論 105 4-1 異質磊晶成長氮化鎵(GaN)微米柱陣列 105 4-1-1 成長氮化鎵(GaN)微米柱陣列與材料分析 105 4-1-1-1 異質磊晶與晶體品質 105 4-1-1-2 微米柱陣列成長與分析 108 4-1-2 成核與成長的機制 115 4-1-2-1 機制探討 115 4-1-2-2 氣相中V/III比例的效應 119 4-2 氯氣輔助成長氮化銦鎵(InGaN)和氮化鋁鎵(AlGaN)磊晶晶體 122 4-2-1 成長氮化銦鎵(InGaN)晶體與材料分析 123 4-2-1-1 氯電漿蝕刻現象 123 4-2-1-2 磊晶晶體成長與分析 125 4-2-2 成長氮化鋁鎵(AlGaN)晶體與材料分析 131 4-2-2-1 磊晶晶體成長與分析 131 4-2-2-2 成長速率與合金組成 138 4-2-3 疊層成長氮化銦鎵(InGaN)和氮化鋁鎵(AlGaN)晶體與材料分析 143 4-2-3-1 疊層成長與分析 143 4-2-3-2 核殼式結構與材料設計 148 4-2-4 反應與成長的機制 150 4-2-4-1 機制探討 150 4-2-4-2 氫氣與電漿的效應 152 4-2-4-3 低溫成長 153 4-3 光電元件的製作、量測與優化 155 4-3-1 元件製作 155 4-3-2 元件量測 163 4-3-3 元件優化 166 4-3-3-1 上電極優化 167 4-3-3-2 下方矽(Si)基板移除 176 4-3-3-3 增加微米柱底層與下電極的接觸面積 178 第五章 結論 181 5-1 結論 181 5-2 未來展望 185 參考文獻 188

    [1] X. Wang, S. Li, M. S. Mohajerani, J. Ledig, H.-H. Wehmann, M. Mandl, et al., "Continuous-flow MOVPE of Ga-polar GaN column arrays and core–shell LED structures", Crystal Growth & Design, Vol. 13, No. 8, pp. 3475-3480 (2013).
    [2] M. Samykano, "Progress in one-dimensional nanostructures", Materials Characterization, Vol. 179, pp. 111373 (2021).
    [3] W.-C. Hou, T.-H. Wu, W.-C. Tang, F. C.-N. Hong, "Nucleation control for the growth of vertically aligned GaN nanowires", Nanoscale Research Letters, Vol. 7, pp. 1-6 (2012).
    [4] Y.-J. Kim, C.-H. Lee, Y. J. Hong, G.-C. Yi, S. S. Kim, H. Cheong, "Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method", Applied Physics Letters, Vol. 89, No. 16, pp. 163128 (2006).
    [5] T. Kuykendall, P. Ulrich, S. Aloni, P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach", Nature Materials, Vol. 6, No. 12, pp. 951-956 (2007).
    [6] C. He, Q. Wu, X. Wang, Y. Zhang, L. Yang, N. Liu, et al., "Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range", ACS Nano, Vol. 5, No. 2, pp. 1291-1296 (2011).
    [7] C. Adelmann, J. Simon, G. Feuillet, N. Pelekanos, B. Daudin, G. Fishman, "Self-assembled InGaN quantum dots grown by molecular-beam epitaxy", Applied Physics Letters, Vol. 76, No. 12, pp. 1570-1572 (2000).
    [8] Y. Yan Zhang, Y. An Yin, "Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer", Applied Physics Letters, Vol. 99, No. 22, pp. 221103 (2011).
    [9] M. Kuik, L. Koster, A. Dijkstra, G. Wetzelaer, P. Blom, "Non-radiative recombination losses in polymer light-emitting diodes", Organic Electronics, Vol. 13, No. 6, pp. 969-974 (2012).
    [10] S. Iijima, "Helical microtubules of graphitic carbon", Nature, Vol. 354, No. 6348, pp. 56-58 (1991).
    [11] C. V. Nguyen, C. So, R. M. Stevens, Y. Li, L. Delziet, P. Sarrazin, et al., "High lateral resolution imaging with sharpened tip of multi-walled carbon nanotube scanning probe", The Journal of Physical Chemistry B, Vol. 108, No. 9, pp. 2816-2821 (2004).
    [12] W. Lu, P. Xie, C. M. Lieber, "Nanowire transistor performance limits and applications", IEEE Transactions on Electron Devices, Vol. 55, No. 11, pp. 2859-2876 (2008).
    [13] F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C. M. Lieber, "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes", Nano Letters, Vol. 5, No. 11, pp. 2287-2291 (2005).
    [14] M. A. Zimmler, F. Capasso, S. Müller, C. Ronning, "Optically pumped nanowire lasers: invited review", Semiconductor Science and Technology, Vol. 25, No. 2, pp. 024001 (2010).
    [15] B. Tian, T. J. Kempa, C. M. Lieber, "Single nanowire photovoltaics", Chemical Society Reviews, Vol. 38, No. 1, pp. 16-24 (2009).
    [16] E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. Mcgehee, "Nanowire solar cells", Annual Review of Materials Research, Vol. 41, pp. 269-295 (2011).
    [17] V. Dobrokhotov, D. Mcilroy, M. G. Norton, A. Abuzir, W. Yeh, I. Stevenson, et al., "Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles", Journal of Applied Physics, Vol. 99, No. 10, pp. 104302 (2006).
    [18] A. K. Wanekaya, W. Chen, N. V. Myung, A. Mulchandani, "Nanowire‐based electrochemical biosensors", Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, Vol. 18, No. 6, pp. 533-550 (2006).
    [19] 郭啟田, "市面上各種燈具光源介紹", 能源報導, pp. 32-34 (2010).
    [20] 許世杰, "節能照明技術—淺談發光二極體", 科學月刊, Vol. 532, pp. 273-280 (2014).
    [21] M. Shur, "GaN based transistors for high power applications", Solid-State Electronics, Vol. 42, No. 12, pp. 2131-2138 (1998).
    [22] H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, et al., "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays", Nano Letters, Vol. 4, No. 6, pp. 1059-1062 (2004).
    [23] C. Skierbiszewski, M. Siekacz, H. Turski, G. Muziol, M. Sawicka, P. Wolny, et al., "True-blue nitride laser diodes grown by plasma-assisted molecular beam epitaxy", Applied Physics Express, Vol. 5, No. 11, pp. 112103 (2012).
    [24] K. Keem, H. Kim, G.-T. Kim, J. S. Lee, B. Min, K. Cho, et al., "Photocurrent in ZnO nanowires grown from Au electrodes", Applied Physics Letters, Vol. 84, No. 22, pp. 4376-4378 (2004).
    [25] Y. Fujiyama, Y. Kuwahara, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, "GaInN/GaN p‐i‐n light‐emitting solar cells", Physica Status Solidi C, Vol. 7, No. 10, pp. 2382-2385 (2010).
    [26] X. Wang, X. Wang, H. Jia, Z. Xing, H. Chen, "Recent progress in single chip white light-emitting diodes with the InGaN underlying layer", Science China Physics, Mechanics and Astronomy, Vol. 53, pp. 445-448 (2010).
    [27] A. Wickenden, D. Koleske, R. Henry, M. Twigg, M. Fatemi, "Resistivity control in unintentionally doped GaN films grown by MOCVD", Journal of Crystal Growth, Vol. 260, No. 1-2, pp. 54-62 (2004).
    [28] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. Vd Hart, et al., "Size-dependent photoconductivity in MBE-grown GaN− nanowires", Nano Letters, Vol. 5, No. 5, pp. 981-984 (2005).
    [29] W.-C. Hou, L.-Y. Chen, F. C.-N. Hong, "Fabrication of gallium nitride nanowires by nitrogen plasma", Diamond and Related Materials, Vol. 17, No. 7-10, pp. 1780-1784 (2008).
    [30] W. C. Hou, F. C.-N. Hong, "Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires", Nanotechnology, Vol. 20, No. 5, pp. 055606 (2009).
    [31] H. Tokunaga, H. Tan, Y. Inaishi, T. Arai, A. Yamaguchi, J. Hidaka, "Performance of multiwafer reactor GaN MOCVD system", Journal of Crystal Growth, Vol. 221, No. 1-4, pp. 616-621 (2000).
    [32] A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, "Indium nitride (InN): A review on growth, characterization, and properties", Journal of Applied Physics, Vol. 94, No. 5, pp. 2779-2808 (2003).
    [33] G. Seryogin, I. Shalish, W. Moberlychan, V. Narayanamurti, "Catalytic hydride vapour phase epitaxy growth of GaN nanowires", Nanotechnology, Vol. 16, No. 10, pp. 2342 (2005).
    [34] J. A. Dean, "Lange’s Handbook of Chemistry", McGraw-Hill, Inc., New York, Vol. 15, pp. 4.44-4.46 (1999).
    [35] S. Nakamura, Y. Harada, M. Seno, "Novel metalorganic chemical vapor deposition system for GaN growth", Applied Physics Letters, Vol. 58, No. 18, pp. 2021-2023 (1991).
    [36] V. Chin, T. Tansley, T. Osotchan, "Electron mobilities in gallium, indium, and aluminum nitrides", Journal of Applied Physics, Vol. 75, No. 11, pp. 7365-7372 (1994).
    [37] S. Gwo, C.-L. Wu, C.-H. Shen, H.-W. Lin, H. Chen, H. Ahn, "InN-on-Si heteroepitaxy: growth, optical properties, and applications", Book InN-on-Si heteroepitaxy: growth, optical properties, and applications, 6134, SPIE, pp. 138-147 (2006).
    [38] L. Ji, Y.-K. Su, S. Chang, "InGaN/GaN multi‐quantum dot light‐emitting diodes", Physica Status Solidi C, Vol. 1, No. 10, pp. 2405-2408 (2004).
    [39] Y.-J. Lee, T.-C. Lu, H.-C. Kuo, S.-C. Wang, "High brightness GaN-based light-emitting diodes", Journal of Display Technology, Vol. 3, No. 2, pp. 118-125 (2007).
    [40] S. Nakamura, T. Mukai, M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes", Applied Physics Letters, Vol. 64, No. 13, pp. 1687-1689 (1994).
    [41] Z. Yu, M. Johnson, J. Brown, N. El-Masry, J. Cook Jr, J. Schetzina, "Study of the epitaxial–lateral-overgrowth (ELO) process for GaN on sapphire", Journal of Crystal Growth, Vol. 195, No. 1-4, pp. 333-339 (1998).
    [42] C.-Y. Cho, M.-K. Kwon, I.-K. Park, S.-H. Hong, J.-J. Kim, S.-E. Park, et al., "High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask", Optics Express, Vol. 19, No. 104, pp. A943-A948 (2011).
    [43] S.-H. Huang, R.-H. Horng, K.-S. Wen, Y.-F. Lin, K.-W. Yen, D.-S. Wuu, "Improved light extraction of nitride-based flip-chip light-emitting diodes via sapphire shaping and texturing", IEEE Photonics Technology Letters, Vol. 18, No. 24, pp. 2623-2625 (2006).
    [44] T. Fujii, Y. Gao, R. Sharma, E. Hu, S. Denbaars, S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening", Applied Physics Letters, Vol. 84, No. 6, pp. 855-857 (2004).
    [45] S. Hersee, M. Fairchild, A. Rishinaramangalam, M. Ferdous, L. Zhang, P. Varangis, et al., "GaN nanowire light emitting diodes based on templated and scalable nanowire growth process", Electronics Letters, Vol. 45, No. 1, pp. 75-76 (2009).
    [46] D. Zubia, S. D. Hersee, "Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials", Journal of Applied Physics, Vol. 85, No. 9, pp. 6492 (1999).
    [47] 吳尚彥, "壓印微結構應用於氮化鎵發光二極體之研究", 國立中央大學光電科學研究所, pp. 12 (2008).
    [48] L. Liu, J. H. Edgar, "Substrates for gallium nitride epitaxy", Materials Science and Engineering: R: Reports, Vol. 37, No. 3, pp. 61-127 (2002).
    [49] M. Asif Khan, J. Kuznia, D. Olson, W. Schaff, J. Burm, M. Shur, "Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor", Applied Physics Letters, Vol. 65, No. 9, pp. 1121-1123 (1994).
    [50] F. Ren, C. R. Abernathy, J. Van Hove, P. Chow, R. Hickman, J. Klaasen, et al., "300° C GaN/AlGaN heterojunction bipolar transistor", Materials Research Society Internet Journal of Nitride Semiconductor Research, Vol. 3, pp. e41 (1998).
    [51] M. Asif Khan, J. Kuznia, A. Bhattarai, D. Olson, "Metal semiconductor field effect transistor based on single crystal GaN", Applied Physics Letters, Vol. 62, No. 15, pp. 1786-1787 (1993).
    [52] S. Nakamura, "InGaN-based violet laser diodes", Semiconductor Science and Technology, Vol. 14, No. 6, pp. R27 (1999).
    [53] M. Asif Khan, J. Kuznia, D. Olson, M. Blasingame, A. Bhattarai, "Schottky barrier photodetector based on Mg‐doped p‐type GaN films", Applied Physics Letters, Vol. 63, No. 18, pp. 2455-2456 (1993).
    [54] W. Warren, C. Johnson, J. Parsons, M. Crew, "Nitrogen Compounds of Gallium III. Gallium Nitride", Journal of Physical Chemistry, Vol. 36, No. 7, pp. 2651-2654 (1932).
    [55] S. Nakamura, T. Mukai, M. S. M. Senoh, N. I. N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films", Japanese Journal of Applied Physics, Vol. 31, No. 2B, pp. L139 (1992).
    [56] S. Nakamura, N. Iwasa, M. S. M. Senoh, T. M. T. Mukai, "Hole compensation mechanism of p-type GaN films", Japanese Journal of Applied Physics, Vol. 31, No. 5R, pp. 1258 (1992).
    [57] S. Yoshida, S. Misawa, S. Gonda, "Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN‐coated sapphire substrates", Applied Physics Letters, Vol. 42, No. 5, pp. 427-429 (1983).
    [58] S. N. S. Nakamura, "GaN growth using GaN buffer layer", Japanese Journal of Applied Physics, Vol. 30, No. 10A, pp. L1705 (1991).
    [59] W. Li, A. Li, M. Qi, Y. Zhang, Z. Zhao, Q. Yang, "Characterization of GaN grown by RF plasma MBE", Materials Science and Engineering: B, Vol. 75, No. 2-3, pp. 224-227 (2000).
    [60] Y. Inoue, T. Hoshino, S. Takeda, K. Ishino, A. Ishida, H. Fujiyasu, et al., "Strong luminescence from dislocation-free GaN nanopillars", Applied Physics Letters, Vol. 85, No. 12, pp. 2340-2342 (2004).
    [61] S. N. Mohammad, H. Morkoç, "Progress and prospects of group-III nitride semiconductors", Progress in Quantum Electronics, Vol. 20, No. 5-6, pp. 361-525 (1996).
    [62] M. Yoshimoto, H. Yamamoto, W. Huang, H. Harima, J. Saraie, A. Chayahara, et al., "Widening of optical bandgap of polycrystalline InN with a few percent incorporation of oxygen", Applied Physics Letters, Vol. 83, No. 17, pp. 3480-3482 (2003).
    [63] A. G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, V. Y. Davydov, "Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy", Applied Physics Letters, Vol. 83, No. 23, pp. 4788-4790 (2003).
    [64] J. Wu, W. Walukiewicz, K. Yu, J. Ager Iii, E. Haller, H. Lu, et al., "Unusual properties of the fundamental band gap of InN", Applied Physics Letters, Vol. 80, No. 21, pp. 3967-3969 (2002).
    [65] H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley, L. F. Eastman, "Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy", Applied Physics Letters, Vol. 79, No. 10, pp. 1489-1491 (2001).
    [66] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, "Optical bandgap energy of wurtzite InN", Applied Physics Letters, Vol. 81, No. 7, pp. 1246-1248 (2002).
    [67] Y. Huang, H. Wang, Q. Sun, J. Chen, D. Li, Y. Wang, et al., "Low-temperature growth of InN by MOCVD and its characterization", Journal of Crystal Growth, Vol. 276, No. 1-2, pp. 13-18 (2005).
    [68] C. Hahn, Z. Zhang, A. Fu, C. H. Wu, Y. J. Hwang, D. J. Gargas, et al., "Epitaxial growth of InGaN nanowire arrays for light emitting diodes", ACS Nano, Vol. 5, No. 5, pp. 3970-3976 (2011).
    [69] A. G. Bhuiyan, T. Tanaka, K. Kasashima, A. Hashimoto, A. Yamamoto, "Growth and characterization of epitaxial InN films on sapphire substrate using an ArF excimer laser-assisted metalorganic vapor-phase epitaxy (LA-MOVPE)", Japanese Journal of Applied Physics, Vol. 42, No. 12R, pp. 7284 (2003).
    [70] J. Aderhold, V. Y. Davydov, F. Fedler, H. Klausing, D. Mistele, T. Rotter, et al., "Electronic and structural properties of InN thin films grown by MOMBE on sapphire substrates", Book Electronic and structural properties of InN thin films grown by MOMBE on sapphire substrates, 4086, SPIE, pp. 82-86 (2000).
    [71] J. Grandal, M. Sánchez‐García, F. Calle, E. Calleja, "Morphology and optical properties of InN layers grown by molecular beam epitaxy on silicon substrates", Physica Status Solidi C, Vol. 2, No. 7, pp. 2289-2292 (2005).
    [72] H. Sekiguchi, K. Kishino, A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate", Applied Physics Letters, Vol. 96, No. 23, pp. 231104 (2010).
    [73] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, et al., "One‐dimensional nanostructures: synthesis, characterization, and applications", Advanced Materials, Vol. 15, No. 5, pp. 353-389 (2003).
    [74] H. J. Fan, P. Werner, M. Zacharias, "Semiconductor nanowires: from self‐organization to patterned growth", Small, Vol. 2, No. 6, pp. 700-717 (2006).
    [75] J. Li, C. Lu, B. Maynor, S. Huang, J. Liu, "Controlled growth of long GaN nanowires from catalyst patterns fabricated by “dip-pen” nanolithographic techniques", Chemistry of Materials, Vol. 16, No. 9, pp. 1633-1636 (2004).
    [76] C.-Y. Nam, J. Kim, J. E. Fischer, "Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth", Applied Physics Letters, Vol. 86, No. 19, pp. 193112 (2005).
    [77] A. R. Wagner, S. W. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth", Applied Physics Letters, Vol. 4, No. 5, pp. 89-90 (1964).
    [78] X. Duan, C. M. Lieber, "General synthesis of compound semiconductor nanowires", Advanced Materials, Vol. 12, No. 4, pp. 298-302 (2000).
    [79] X. Duan, C. M. Lieber, "Laser-assisted catalytic growth of single crystal GaN nanowires", Journal of the American Chemical Society, Vol. 122, No. 1, pp. 188-189 (2000).
    [80] Y. Wu, P. Yang, "Direct observation of vapor− liquid− solid nanowire growth", Journal of the American Chemical Society, Vol. 123, No. 13, pp. 3165-3166 (2001).
    [81] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport", Advanced Materials, Vol. 13, No. 2, pp. 113-116 (2001).
    [82] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, "Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers", Applied Physics Letters, Vol. 61, No. 17, pp. 2051-2053 (1992).
    [83] A. M. Morales, C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science, Vol. 279, No. 5348, pp. 208-211 (1998).
    [84] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, et al., "Catalytic growth of β‐Ga2O3 nanowires by arc discharge", Advanced Materials, Vol. 12, No. 10, pp. 746-750 (2000).
    [85] J. Hu, M. Ouyang, P. Yang, C. M. Lieber, "Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires", Nature, Vol. 399, No. 6731, pp. 48-51 (1999).
    [86] H. Omi, T. Ogino, "Self-assembled Ge nanowires grown on Si (113)", Applied Physics Letters, Vol. 71, No. 15, pp. 2163-2165 (1997).
    [87] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, C. M. Lieber, "Growth and transport properties of complementary germanium nanowire field-effect transistors", Applied Physics Letters, Vol. 84, No. 21, pp. 4176-4178 (2004).
    [88] S. H. Yun, A. Dibos, J. Wu, D.-K. Kim, "Effect of quench on crystallinity and alignment of boron nanowires", Applied Physics Letters, Vol. 84, No. 15, pp. 2892-2894 (2004).
    [89] D. Wang, J. G. Lu, C. J. Otten, W. E. Buhro, "Electrical transport in boron nanowires", Applied Physics Letters, Vol. 83, No. 25, pp. 5280-5282 (2003).
    [90] Y. C. Zhu, Y. Bando, D. F. Xue, D. Golberg, "Oriented Assemblies of ZnS One‐Dimensional Nanostructures", Advanced Materials, Vol. 16, No. 9‐10, pp. 831-834 (2004).
    [91] Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, S. Hark, "Size‐Dependent Periodically Twinned ZnSe Nanowires", Advanced Materials, Vol. 16, No. 16, pp. 1436-1440 (2004).
    [92] C. Ye, G. Meng, Y. Wang, Z. Jiang, L. Zhang, "On the growth of CdS nanowires by the evaporation of CdS nanopowders", The Journal of Physical Chemistry B, Vol. 106, No. 40, pp. 10338-10341 (2002).
    [93] B.-B. Xiao, Y.-B. Xu, "VLS synthesis of disordered CdSe nanowires and optical properties of an individual CdSe nanowire", Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 3, pp. 696-699 (2011).
    [94] C.-C. Chen, C.-C. Yeh, C.-H. Chen, M.-Y. Yu, H.-L. Liu, J.-J. Wu, et al., "Catalytic growth and characterization of gallium nitride nanowires", Journal of the American Chemical Society, Vol. 123, No. 12, pp. 2791-2798 (2001).
    [95] R. Sun, D. Jacobsson, I.-J. Chen, M. Nilsson, C. Thelander, S. Lehmann, et al., "Sn-seeded GaAs nanowires as self-assembled radial p–n junctions", Nano Letters, Vol. 15, No. 6, pp. 3757-3762 (2015).
    [96] R. Gupta, Q. Xiong, G. Mahan, P. Eklund, "Surface optical phonons in gallium phosphide nanowires", Nano Letters, Vol. 3, No. 12, pp. 1745-1750 (2003).
    [97] E. P. Bakkers, M. A. Verheijen, "Synthesis of InP nanotubes", Journal of the American Chemical Society, Vol. 125, No. 12, pp. 3440-3441 (2003).
    [98] Z. Zhang, Z. Lu, H. Xu, P. Chen, W. Lu, J. Zou, "Structure and quality controlled growth of InAs nanowires through catalyst engineering", Nano Research, Vol. 7, No. 11, pp. 1640-1649 (2014).
    [99] S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, H. J. Lee, "Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method", Chemistry of Materials, Vol. 15, No. 17, pp. 3294-3299 (2003).
    [100] P. Gao, Z. L. Wang, "Self-assembled nanowire− nanoribbon junction arrays of ZnO", The Journal of Physical Chemistry B, Vol. 106, No. 49, pp. 12653-12658 (2002).
    [101] C. Tang, Y. Bando, T. Sato, "Oxide-assisted catalytic growth of MgO nanowires with uniform diameter distribution", The Journal of Physical Chemistry B, Vol. 106, No. 30, pp. 7449-7452 (2002).
    [102] J. Hu, Q. Li, X. Meng, C. Lee, S. Lee, "Synthesis of β-Ga2O3 nanowires by laser ablation", The Journal of Physical Chemistry B, Vol. 106, No. 37, pp. 9536-9539 (2002).
    [103] K.-W. Chang, J.-J. Wu, "Low-temperature catalytic growth of β-Ga2O3 nanowires using single organometallic precursor", The Journal of Physical Chemistry B, Vol. 108, No. 6, pp. 1838-1843 (2004).
    [104] Y. Wang, V. Schmidt, S. Senz, U. Gösele, "Epitaxial growth of silicon nanowires using an aluminium catalyst", Nature Nanotechnology, Vol. 1, No. 3, pp. 186-189 (2006).
    [105] X. Weng, R. A. Burke, J. M. Redwing, "The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal–organic chemical vapor deposition", Nanotechnology, Vol. 20, No. 8, pp. 085610 (2009).
    [106] L. C. Campos, M. Tonezzer, A. S. Ferlauto, V. Grillo, R. Magalhães‐Paniago, S. Oliveira, et al., "Vapor–solid–solid growth mechanism driven by epitaxial match between solid AuZn alloy catalyst particles and ZnO nanowires at low temperatures", Advanced Materials, Vol. 20, No. 8, pp. 1499-1504 (2008).
    [107] L. Geelhaar, C. Cheze, W. Weber, R. Averbeck, H. Riechert, T. Kehagias, et al., "Axial and radial growth of Ni-induced GaN nanowires", Applied Physics Letters, Vol. 91, No. 9, pp. 093113 (2007).
    [108] W.-C. Hou, L.-Y. Chen, W.-C. Tang, F. C. Hong, "Control of seed detachment in Au-assisted GaN nanowire growths", Crystal Growth & Design, Vol. 11, No. 4, pp. 990-994 (2011).
    [109] T. Yanagida, K. Nagashima, H. Tanaka, T. Kawai, "Mechanism of catalyst diffusion on magnesium oxide nanowire growth", Applied Physics Letters, Vol. 91, No. 6, pp. 061502 (2007).
    [110] K. Nagashima, T. Yanagida, K. Oka, H. Tanaka, T. Kawai, "Mechanism and control of sidewall growth and catalyst diffusion on oxide nanowire vapor-liquid-solid growth", Applied Physics Letters, Vol. 93, No. 15, pp. 153103 (2008).
    [111] A. J. Hannon, S. Kodambaka, F. Ross, R. Tromp, "The influence of the surface migration of gold on the growth of silicon nanowires", Nature, Vol. 440, No. 7080, pp. 69-71 (2006).
    [112] M. Sanchez-Garcia, E. Calleja, E. Monroy, F. Sanchez, F. Calle, E. Munoz, et al., "The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN-and AlN-layers grown by molecular beam epitaxy on Si (1 1 1)", Journal of Crystal Growth, Vol. 183, No. 1-2, pp. 23-30 (1998).
    [113] J. Ristić, E. Calleja, S. Fernández-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., "On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy", Journal of Crystal Growth, Vol. 310, No. 18, pp. 4035-4045 (2008).
    [114] J. Neugebauer, T. K. Zywietz, M. Scheffler, J. E. Northrup, H. Chen, R. M. Feenstra, "Adatom kinetics on and below the surface: The existence of a new diffusion channel", Physical Review Letters, Vol. 90, No. 5, pp. 056101 (2003).
    [115] D. Xian-Qi, W. Hua-Sheng, X. Mao-Hai, X. Shi-Hong, T. Shuk-Yin, "Nitrogen adatom diffusion on a Ga-rich GaN (0001) surface", Chinese Physics Letters, Vol. 21, No. 3, pp. 527 (2004).
    [116] H. Li, H. Chandrasekaran, M. K. Sunkara, R. Collazo, Z. Sitar, M. Stukowski, et al., "Self-oriented growth of GaN films on molten gallium", MRS Online Proceedings Library, Vol. 831, pp. E11.34.1-E11.34.6 (2004).
    [117] Y. Cho, H. Hardtdegen, N. Kaluza, N. Thillosen, R. Steins, Z. Sofer, et al., "Effect of carrier gas on GaN epilayer characteristics", Physica Status Solidi C, Vol. 3, No. 6, pp. 1408-1411 (2006).
    [118] L. Titova, T. B. Hoang, H. Jackson, L. Smith, J. Yarrison-Rice, Y. Kim, et al., "Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires", Applied Physics Letters, Vol. 89, No. 17, pp. 173126 (2006).
    [119] V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, H. Riechert, "Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius", Physical Review B, Vol. 81, No. 8, pp. 085310 (2010).
    [120] B. G. Streetman, S. Banerjee, "Solid State Electronic Devices", Pearson Prentice Hall, New Jersey, pp.161 (2006).
    [121] B. G. Streetman, S. Banerjee, "Solid State Electronic Devices", Pearson Prentice Hall, New Jersey, pp.171 (2006).
    [122] B. G. Streetman, S. Banerjee, "Solid State Electronic Devices", Pearson Prentice Hall, New Jersey, pp.186 (2006).
    [123] W. Seifert, G. Fitzl, E. Butter, "Study on the growth rate in VPE of GaN", Journal of Crystal Growth, Vol. 52, pp. 257-262 (1981).
    [124] C. Dam, A. Grzegorczyk, P. Hageman, P. Larsen, "Method for HVPE growth of thick crack-free GaN layers", Journal of Crystal Growth, Vol. 290, No. 2, pp. 473-478 (2006).
    [125] R. Molnar, W. Götz, L. Romano, N. Johnson, "Growth of gallium nitride by hydride vapor-phase epitaxy", Journal of Crystal Growth, Vol. 178, No. 1-2, pp. 147-156 (1997).
    [126] H. F. Lu, G. Yu, C. Lin, X. Wang, B. Wang, X. Shi, et al., "High quality GaN film overgrown on GaN nanorods array template by HVPE", Materials Letters, Vol. 64, No. 13, pp. 1490-1492 (2010).
    [127] H. M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, K. S. Chung, "Growth of GaN nanorods by a hydride vapor phase epitaxy method", Advanced Materials, Vol. 14, No. 13‐14, pp. 991-993 (2002).
    [128] T. Yamane, K. Hanaoka, H. Murakami, Y. Kumagai, A. Koukitu, "Tri‐halide vapor phase epitaxy of GaN using GaCl3 gas as a group III precursor", Physica Status Solidi C, Vol. 8, No. 5, pp. 1471-1474 (2011).
    [129] D. H. Kuo, W. H. Wu, "The Growth of GaN Nanowires by LiF‐Assisted CVD", Chemical Vapor Deposition, Vol. 15, No. 1‐3, pp. 11-14 (2009).
    [130] G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley, "Springer Handbook of Crystal Growth", Springer Berlin Heidelberg, New York, pp. 870 (2010).
    [131] M. Bosi, R. Fornari, "A study of Indium incorporation efficiency in InGaN grown by MOVPE", Journal of Crystal Growth, Vol. 265, No. 3-4, pp. 434-439 (2004).
    [132] J. R. Roth, "Industrial Plasma Engineering", Institute of Physics Publishing, London, Vol. 1 (1995).
    [133] D. B. Williams, C. B. Carter, "Transmission Electron Microscopy", Plenum Press, New York, Vol. 1, pp. 7 (1996).
    [134] S. Milita, M. Servidori, "X-ray rocking-curve analysis of crystals with buried amorphous layers. Case of ion-implanted silicon", Journal of Applied Crystallography, Vol. 28, No. 6, pp. 666-672 (1995).
    [135] K. K. Smith, "Photoluminescence of semiconductor materials", Thin Solid Films, Vol. 84, No. 2, pp. 171-182 (1981).
    [136] J. P. Wolfe, A. Mysyrowicz, "Excitonic matter", Scientific American, Vol. 250, No. 3, pp. 98-107 (1984).
    [137] J. I. Pankove, "Optical Processes in Semiconductors", Dover Publications, Inc., New York, pp. 15-22 (1975).
    [138] F. Schulze, A. Dadgar, J. Bläsing, A. Krost, "Influence of buffer layers on metalorganic vapor phase epitaxy grown GaN on Si (001)", Applied Physics Letters, Vol. 84, No. 23, pp. 4747-4749 (2004).
    [139] A. Wierzbicka, G. Tchutchulashvili, M. Sobanska, K. Klosek, R. Minikayev, J. Domagala, et al., "Arrangement of GaN nanowires on Si (001) substrates studied by X-ray diffraction: Importance of silicon nitride interlayer", Applied Surface Science, Vol. 425, pp. 1014-1019 (2017).
    [140] W.-K. Wang, M.-C. Jiang, "Growth behavior of hexagonal GaN on Si (100) and Si (111) substrates prepared by pulsed laser deposition", Japanese Journal of Applied Physics, Vol. 55, No. 9, pp. 095503 (2016).
    [141] T. N. Bhat, M. K. Rajpalke, B. Roul, M. Kumar, S. Krupanidhi, "Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy", Journal of Applied Physics, Vol. 110, No. 9, pp. 093718 (2011).
    [142] U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, et al., "Origin of defect-related photoluminescence bands in doped and nominally undoped GaN", Physical Review B, Vol. 59, No. 8, pp. 5561 (1999).
    [143] Y. Inoue, T. Hoshino, S. Takeda, A. Ishida, H. Fujiyasu, H. Kominami, et al., "Cathodoluminescence of polycrystalline GaN grown by a hot wall epitaxy technique", Physica Status Solidi B, Vol. 241, No. 12, pp. 2717-2721 (2004).
    [144] F. Schulze, A. Dadgar, J. Bläsing, T. Hempel, A. Diez, J. Christen, et al., "Growth of single-domain GaN layers on Si (0 0 1) by metalorganic vapor-phase epitaxy", Journal of Crystal Growth, Vol. 289, No. 2, pp. 485-488 (2006).
    [145] K. Ohta, T. Kojima, T. Nakagawa, "Anisotropic surface migration of Ga atoms on GaAs (001)", Journal of Crystal Growth, Vol. 95, No. 1-4, pp. 71-74 (1989).
    [146] S. Takeda, Y. Inoue, A. Ishida, H. Mimura, "Growth and density control of GaN nanodots and nanopillars", Physica Status Solidi C, Vol. 5, No. 9, pp. 3008-3010 (2008).
    [147] S. Naritsuka, T. Kondo, H. Otsubo, K. Saitoh, Y. Yamamoto, T. Maruyama, "In situ annealing of GaN dot structures grown by droplet epitaxy on (1 1 1) Si substrates", Journal of Crystal Growth, Vol. 300, No. 1, pp. 118-122 (2007).
    [148] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, P. Yang, "Watching GaN nanowires grow", Nano Letters, Vol. 3, No. 6, pp. 867-869 (2003).
    [149] X. Zhang, S. Yang, C.-G. Tu, Y.-W. Kiang, C. Yang, "Growth model of a GaN nanorod with the pulsed-growth technique of metalorganic chemical vapor deposition", Crystal Growth & Design, Vol. 18, No. 7, pp. 3767-3773 (2018).
    [150] C.-G. Tu, X. Zhang, K.-P. Chou, W. F. Tse, Y.-C. Hsu, Y.-P. Chen, et al., "AlGaN nano-shell structure on a GaN nanorod formed with the pulsed MOCVD growth", Nanotechnology, Vol. 30, No. 27, pp. 275201 (2019).
    [151] A. Efremov, V. Svettsov, D. Sitanov, D. Balashov, "A comparative study of plasma parameters and gas phase compositions in Cl2 and HCl direct current glow discharges", Thin Solid Films, Vol. 516, No. 10, pp. 3020-3027 (2008).
    [152] L. Gatilova, S. Bouchoule, S. Guilet, P. Chabert, "Investigation of InP etching mechanisms in a Cl 2/H 2 inductively coupled plasma by optical emission spectroscopy", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 27, No. 2, pp. 262-275 (2009).
    [153] F. Chen, X. Ji, S. P. Lau, "Recent progress in group III-nitride nanostructures: From materials to applications", Materials Science and Engineering: R: Reports, Vol. 142, pp. 100578 (2020).
    [154] W.-C. Tang, F. C.-N. Hong, "Growths of indium gallium nitride nanowires by plasma-assisted chemical vapor deposition", Thin Solid Films, Vol. 570, pp. 315-320 (2014).
    [155] H. Morkoç, "Handbook of Nitride Semiconductors and Devices", John Wiley & Sons, New Jersey, Vol. 2, pp. 66 (2009).
    [156] M. F. Vos, G. Van Straaten, W. E. Kessels, A. J. Mackus, "Atomic layer deposition of cobalt using H2-, N2-, and NH3-based plasmas: on the role of the co-reactant", The Journal of Physical Chemistry C, Vol. 122, No. 39, pp. 22519-22529 (2018).
    [157] F. Kawamura, M. Imade, M. Yoshimura, Y. Mori, T. Sasaki, "Synthesis of GaN crystal using gallium hydride", Japanese Journal of Applied Physics, Vol. 44, No. 1L, pp. L1 (2004).
    [158] B. P. Burton, A. Van De Walle, U. Kattner, "First principles phase diagram calculations for the wurtzite-structure systems AlN–GaN, GaN–InN, and AlN–InN", Journal of Applied Physics, Vol. 100, No. 11, pp. 113528 (2006).
    [159] J. Su, M. Gherasimova, G. Cui, H. Tsukamoto, J. Han, T. Onuma, et al., "Growth of AlGaN nanowires by metalorganic chemical vapor deposition", Applied Physics Letters, Vol. 87, No. 18, pp. 183108 (2005).
    [160] W.-Y. Jung, C.-M. Kwak, J.-B. Seol, J. K. Park, C.-G. Park, Y. K. Jeong, "Observation of Anisotropic Growth and Compositional Discontinuity in AlGaN Electron-Blocking Layers on GaN Microrods", Crystal Growth & Design, Vol. 18, No. 3, pp. 1593-1597 (2018).
    [161] P. Chen, S. Chua, Z. Miao, "Phase separation in AlGaN/GaN heterojunction grown by metalorganic chemical vapor deposition", Journal of Crystal Growth, Vol. 273, No. 1-2, pp. 74-78 (2004).
    [162] S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, et al., "High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication", ACS Applied Materials & Interfaces, Vol. 10, No. 6, pp. 5641-5648 (2018).
    [163] M. A. Johar, T. Kim, H.-G. Song, A. Waseem, J.-H. Kang, M. A. Hassan, et al., "Three-dimensional hierarchical semi-polar GaN/InGaN MQW coaxial nanowires on a patterned Si nanowire template", Nanoscale Advances, Vol. 2, No. 4, pp. 1654-1665 (2020).
    [164] A. Sivadasan, G. Mangamma, S. Bera, M. Kamruddin, S. Dhara, "Piezoelectric domains in the AlGaN hexagonal microrods: Effect of crystal orientations", Journal of Applied Physics, Vol. 119, No. 17, pp. 174304 (2016).
    [165] T.-H. Wu, F. C.-N. Hong, "Suppressing the lateral growth of gallium nitride nanowires by introducing hydrogen plasma", Thin Solid Films, Vol. 529, pp. 133-137 (2013).
    [166] G. Zhang, Z. Yang, Y. Tong, Z. Qin, X. Hu, Z. Chen, et al., "InGaN/GaN MQW high brightness LED grown by MOCVD", Optical Materials, Vol. 23, No. 1-2, pp. 183-186 (2003).
    [167] M. Mastro, C. Eddy Jr, D. Gaskill, N. Bassim, J. Casey, A. Rosenberg, et al., "MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates", Journal of Crystal Growth, Vol. 287, No. 2, pp. 610-614 (2006).
    [168] P. Laukkanen, S. Lehkonen, P. Uusimaa, M. Pessa, A. Seppälä, T. Ahlgren, et al., "Emission studies of InGaN layers and LEDs grown by plasma-assisted MBE", Journal of Crystal Growth, Vol. 230, No. 3-4, pp. 503-506 (2001).
    [169] K. Lee, R. Page, V. Protasenko, L. J. Schowalter, M. Toita, H. G. Xing, et al., "MBE growth and donor doping of coherent ultrawide bandgap AlGaN alloy layers on single-crystal AlN substrates", Applied Physics Letters, Vol. 118, No. 9, pp. 092101 (2021).
    [170] S. G. Bae, I. Jeon, H. Jeon, K. H. Kim, M. Yang, S. N. Yi, et al., "Fabrication of selective-area growth InGaN LED by mixed-source hydride vapor-phase epitaxy", Japanese Journal of Applied Physics, Vol. 57, No. 1S, pp. 01AD03 (2017).
    [171] S. Fleischmann, A. Mogilatenko, S. Hagedorn, E. Richter, D. Goran, P. Schäfer, et al., "Analysis of HVPE grown AlGaN layers on honeycomb patterned sapphire", Journal of Crystal Growth, Vol. 414, pp. 32-37 (2015).
    [172] X. Jia, Y. Zhou, B. Liu, H. Lu, Z. Xie, R. Zhang, et al., "A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications", Materials Research Express, Vol. 6, No. 10, pp. 105915 (2019).
    [173] R. Shukla, A. Srivastava, A. Srivastava, K. Dubey, "Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition", Journal of Crystal Growth, Vol. 294, No. 2, pp. 427-431 (2006).

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE