| 研究生: |
林韋辰 Lin, Wei-Chen |
|---|---|
| 論文名稱: |
選擇性控制聚合聚苯胺生成於不同拓樸結構之金屬有機骨架奈米孔洞中並用作超電容器材料 Confining Polyaniline Selectively in the Nanopores of Topologically Distinct Metal–Organic Frameworks as the Material for Supercapacitors |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 導電高分子 、孔洞限制 、擬電容性質材料 、以鋯為金屬節點的金屬有機骨架 、上而下滴落塗佈法 、下而上溶劑熱合成法 |
| 外文關鍵詞: | conducting polymer, pore confinement, pseudocapacitive material, zirconium-based MOF, top-down drop-casting, bottom-up solvothermal growth |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
作為彌補電池與電雙層電容器之間的橋樑,擬電容器近年來由於能源議題而備受研究,當中的導電高分子聚苯胺(Polyaniline, PANI)與奈米孔洞材料結合形成的複合材料,由於有優異的電化學表現也備受期待。金屬有機骨架(Metal–Organic Framework, MOF)為相對較新穎的奈米孔洞材料,有著規律的孔洞與極高的比表面積,並且可以針對不同應用改變其成膜方式。
本研究透過策略性步驟,使PANI單獨地被限制在三種以鋯為基底的MOF孔洞中,同時避免大量成堆的聚苯胺(Bulk PANI)生成於MOF晶體間,並以上而下滴落塗佈法(Top-down drop-casting)為主,下而上溶劑熱合成法(Bottom-up solvothermal growth)為輔製備修飾電極,探討其電化學表現與行為。
下而上溶劑熱合成法所製備之複合材料電極,表現出定義較為明確的氧化還原峰,故較為適合應用在感測與催化方面;而上而下滴落塗佈法所製備之複合材料電極中,PANI-UiO-66複合材料有著最高的比電容值且長期穩定性佳,適合作為超電容器的材料。
Three topologically distinct zirconium-based metal–organic frameworks (Zr-MOFs) constructed from redox-innocent linkers, MOF-808, defective UiO-66, and CAU-24, are synthesized, and the redox-active polyaniline is post-synthetically confined within the nanopores of these Zr-MOFs without forming obvious bulk polyaniline (PANI) between MOF crystals. Since the poly(sodium 4-styrenesulfonate) (PSS) is too bulky to insert into the nanopores of these Zr-MOFs, the formation of pore-confined solid PANI and the formation of well dispersed PANI:PSS occur within the MOF crystals and in the bulk solution, respectively. The homogeneous PANI:PSS polymer solution can be removed from the PANI-Zr-MOFs composites by successive washing the sample with fresh acidic solutions, and the resulting pore-confined PANI in three kinds of Zr-MOFs are synthesized successfully after the solvent exchange procedure.
Two different fabricating methods of PANI composites thin film, top-down drop-casting and bottom-up solvothermal growth, are investigated in the fields of materials for pseudocapacitors. The bottom-up solvothermally grown PANI-Zr-MOFs composites both show smaller peak current density and enclosed area in cyclic voltammetry curves compared to that of the top-down drop-casting PANI-Zr-MOFs composites. For the top-down drop-casting method, PANI-UiO-66 exhibits the highest charge-storage capacities among other PANI composites, and the capacity is also higher than those of the bulk PANI thin films.
1. Lu, C.; Ben, T.; Xu, S.; Qiu, S., Electrochemical synthesis of a microporous conductive polymer based on a metal–organic framework thin film. Angewandte Chemie International Edition 2014, 126 (25), 6454-6458.
2. Hod, I.; Deria, P.; Bury, W.; Mondloch, J. E.; Kung, C.-W.; So, M.; Sampson, M. D.; Peters, A. W.; Kubiak, C. P.; Farha, O. K., A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature Communications 2015, 6 (1), 1-9.
3. Worrall, S. D.; Bissett, M. A.; Hill, P. I.; Rooney, A. P.; Haigh, S. J.; Attfield, M. P.; Dryfe, R. A., Metal-organic framework templated electrodeposition of functional gold nanostructures. Electrochimica Acta 2016, 222, 361-369.
4. Hirai, K.; Sumida, K.; Meilikhov, M.; Louvain, N.; Nakahama, M.; Uehara, H.; Kitagawa, S.; Furukawa, S., Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer–quartz crystal microbalance hybrid sensor. Journal of Materials Chemistry C 2014, 2 (17), 3336-3344.
5. Liang, C.; Zhang, F.; Lin, H.; Jiang, C.; Guo, W.; Fan, S.; Qu, F., An innovative sensor for hydroxylamine determination: Using molybdenum hybrid zeolitic imidazolate framework–conducting polymer composite as electrocatalyst. Electrochimica Acta 2019, 327, 134945.
6. Lopa, N. S.; Rahman, M. M.; Ahmed, F.; Sutradhar, S. C.; Ryu, T.; Kim, W., A base-stable metal-organic framework for sensitive and non-enzymatic electrochemical detection of hydrogen peroxide. Electrochimica Acta 2018, 274, 49-56.
7. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M., Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 2014, 8 (7), 7451-7457.
8. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials 2017, 16 (2), 220-224.
9. Gattrell, M.; Kirk, D., A study of electrode passivation during aqueous phenol electrolysis. Journal of the Electrochemical Society 1993, 140 (4), 903.
10. Kumar, S. A.; Chen, S.-M., Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes-A review. Sensors 2008, 8 (2), 739-766.
11. Podlovchenko, B. I.; Andreev, V. N., Electrocatalysis on polymer-modified electrodes. Russian Chemical Reviews 2002, 71 (10), 837-851.
12. Sakurai, S.; Jiang, H.-q.; Takahashi, M.; Kobayashi, K., Enhanced performance of a dye-sensitized solar cell with a modified poly (3, 4-ethylenedioxythiophene)/TiO2/FTO counter electrode. Electrochimica Acta 2009, 54 (23), 5463-5469.
13. Shi, M.; Anson, F. C., Rapid oxidation of Ru (NH3) 63+ by Os (bpy) 33+ within Nafion coatings on electrodes. Langmuir 1996, 12 (8), 2068-2075.
14. Bertoncello, P.; Ciani, I.; Li, F.; Unwin, P. R., Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir− Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry. Langmuir 2006, 22 (25), 10380-10388.
15. Wang, X.; Wang, Q.; Wang, Q.; Gao, F.; Gao, F.; Yang, Y.; Guo, H., Highly dispersible and stable copper terephthalate metal–organic framework–graphene oxide nanocomposite for an electrochemical sensing application. ACS Applied Materials & Interfaces 2014, 6 (14), 11573-11580.
16. Lin, X.; Ni, Y.; Kokot, S., Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sensors and Actuators B: Chemical 2016, 233, 100-106.
17. Hwang, D.-W.; Lee, S.; Seo, M.; Chung, T. D., Recent advances in electrochemical non-enzymatic glucose sensors–a review. Analytica Chimica Acta 2018, 1033, 1-34.
18. Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R., Recent advances in electrocatalysts for oxygen reduction reaction. Chemical Reviews 2016, 116 (6), 3594-3657.
19. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S., Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. ACS Catalysis 2016, 6 (12), 8069-8097.
20. Baetens, R.; Jelle, B. P.; Gustavsen, A., Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells 2010, 94 (2), 87-105.
21. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature Materials 2008, 7, 845-854.
22. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
23. Hwang, J. Y.; Myung, S. T.; Sun, Y. K., Recent progress in rechargeable potassium batteries. Advanced Functional Materials 2018, 28 (43), 1802938.
24. Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q.; Lau, J.; Dunn, B., Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials 2020, 5 (1), 5-19.
25. Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E., Carbons and electrolytes for advanced supercapacitors. Advanced Materials 2014, 26 (14), 2219-2251.
26. Wang, K.; Wu, H.; Meng, Y.; Wei, Z., Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10 (1), 14-31.
27. Jost, K.; Dion, G.; Gogotsi, Y., Textile energy storage in perspective. Journal of Materials Chemistry A 2014, 2 (28), 10776-10787.
28. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
29. Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
30. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5 (7), 7854-7863.
31. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Materials 2006, 5 (12), 987-994.
32. Wu, N.-L., Nanocrystalline oxide supercapacitors. Materials Chemistry and Physics 2002, 75 (1-3), 6-11.
33. Brousse, T.; Toupin, M.; Dugas, R.; Athouël, L.; Crosnier, O.; Belanger, D., Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. Journal of the Electrochemical Society 2006, 153 (12), A2171.
34. Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P., Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources 1994, 47 (1-2), 89-107.
35. Service, R. F., New 'Supercapacitor' Promises to Pack More Electrical Punch. Science 2006, 313, 902-905.
36. Augustyn, V.; Simon, P.; Dunn, B., Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 2014, 7 (5), 1597-1614.
37. Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S., Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. Journal of Power Sources 2009, 190 (2), 578-586.
38. Tajik, S.; Beitollahi, H.; Nejad, F. G.; Shoaie, I. S.; Khalilzadeh, M. A.; Asl, M. S.; Van Le, Q.; Zhang, K.; Jang, H. W.; Shokouhimehr, M., Recent developments in conducting polymers: Applications for electrochemistry. RSC Advances 2020, 10 (62), 37834-37856.
39. Malinauskas, A.; Malinauskiene, J.; Ramanavičius, A., Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnology 2005, 16 (10), R51.
40. Forouzandeh, P.; Kumaravel, V.; Pillai, S. C., Electrode materials for supercapacitors: a review of recent advances. Catalysts 2020, 10 (9), 969.
41. Abu-Thabit, N. Y., Chemical oxidative polymerization of polyaniline: A practical approach for preparation of smart conductive textiles. Journal of Chemical Education 2016, 93 (9), 1606-1611.
42. Dhand, C.; Das, M.; Datta, M.; Malhotra, B., Recent advances in polyaniline based biosensors. Biosensors and Bioelectronics 2011, 26 (6), 2811-2821.
43. MacDiarmid, A. G., “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angewandte Chemie International Edition 2001, 40 (14), 2581-2590.
44. Li, D.; Huang, J.; Kaner, R. B., Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Accounts of Chemical Research 2009, 42 (1), 135-145.
45. Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K. J.; Samuelson, L., Enzymatically synthesized conducting polyaniline. Journal of the American Chemical Society 1999, 121 (1), 71-78.
46. Nagaoka, T.; Nakao, H.; Suyama, T.; Ogura, K.; Oyama, M.; Okazaki, S., Electrochemical characterization of soluble conducting polymers as ion exchangers. Analytical Chemistry 1997, 69 (6), 1030-1037.
47. Shannon, K.; Fernandez, J. E., Preparation and properties of water-soluble, poly (styrenesulfonic acid)-doped polyaniline. Journal of the Chemical Society, Chemical Communications 1994, (5), 643-644.
48. Stejskal, J.; Spirkova, M.; Riede, A.; Helmstedt, M.; Mokreva, P.; Prokes, J., Polyaniline dispersions 8. The control of particle morphology. Polymer 1999, 40 (10), 2487-2492.
49. Li, S.; Cao, Y.; Xue, Z., Soluble polyaniline. Synthetic Metals 1987, 20 (2), 141-149.
50. Kang, Y.; Lee, M.-H.; Rhee, S. B., Electrochemical properties of polyaniline doped with poly (styrenesulfonic acid). Synthetic Metals 1992, 52 (3), 319-328.
51. Jang, J.; Ha, J.; Cho, J., Fabrication of water‐dispersible polyaniline‐poly (4‐styrenesulfonate) nanoparticles for inkjet‐printed chemical‐sensor applications. Advanced Materials 2007, 19 (13), 1772-1775.
52. Hu, C.-W.; Kawamoto, T.; Tanaka, H.; Takahashi, A.; Lee, K.-M.; Kao, S.-Y.; Liao, Y.-C.; Ho, K.-C., Water processable Prussian blue–polyaniline: polystyrene sulfonate nanocomposite (PB–PANI: PSS) for multi-color electrochromic applications. Journal of Materials Chemistry C 2016, 4 (43), 10293-10300.
53. Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H., Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 2009, 34 (8), 783-810.
54. Baker, C. O.; Huang, X.; Nelson, W.; Kaner, R. B., Polyaniline nanofibers: broadening applications for conducting polymers. Chemical Society Reviews 2017, 46 (5), 1510-1525.
55. Zhang, K.; Zhang, L. L.; Zhao, X.; Wu, J., Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials 2010, 22 (4), 1392-1401.
56. Salunkhe, R. R.; Hsu, S. H.; Wu, K. C.; Yamauchi, Y., Large‐scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 2014, 7 (6), 1551-1556.
57. Soni, R.; Kashyap, V.; Nagaraju, D.; Kurungot, S., Realizing high capacitance and rate capability in polyaniline by enhancing the electrochemical surface area through induction of superhydrophilicity. ACS Applied Materials & Interfaces 2018, 10 (1), 676-686.
58. Chen, W.; Jiang, S.; Xiao, H.; Zhou, X.; Xu, X.; Yang, J.; Siddique, A. H.; Liu, Z., Graphene Modified Polyaniline‐Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSusChem 2021, 14 (3), 938-945.
59. Li, P.; Jin, Z.; Peng, L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G., Stretchable all‐gel‐state fiber‐shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Advanced Materials 2018, 30 (18), 1800124.
60. Milan Babu, P.; Shin, M.; Kim, H. J., Polyaniline-silver-manganese dioxide nanorod ternary composite for asymmetric supercapacitor with remarkable electrochemical performance. International Journal of Hydrogen Energy 2021, 46 (1), 474-485.
61. Chen, L.; Song, Z.; Liu, G.; Qiu, J.; Yu, C.; Qin, J.; Ma, L.; Tian, F.; Liu, W., Synthesis and electrochemical performance of polyaniline–MnO2 nanowire composites for supercapacitors. Journal of Physics and Chemistry of Solids 2013, 74 (2), 360-365.
62. Mezgebe, M. M.; Xu, K.; Wei, G.; Guang, S.; Xu, H., Polyaniline wrapped manganese dioxide nanorods: Facile synthesis and as an electrode material for supercapacitors with remarkable electrochemical properties. Journal of Alloys and Compounds 2019, 794, 634-644.
63. Hekmat, F.; Shahrokhian, S.; Taghavinia, N., Ultralight flexible asymmetric supercapacitors based on manganese dioxide–polyaniline nanocomposite and reduced graphene oxide electrodes directly deposited on foldable cellulose papers. The Journal of Physical Chemistry C 2018, 122 (48), 27156-27168.
64. Rantho, M. N.; Madito, M.; Ochai-Ejeh, F.; Manyala, N., Asymmetric supercapacitor based on vanadium disulfide nanosheets as a cathode and carbonized iron cations adsorbed onto polyaniline as an anode. Electrochimica Acta 2018, 260, 11-23.
65. Kim, M.; Lee, C.; Jang, J., Fabrication of highly flexible, scalable, and high‐performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Advanced Functional Materials 2014, 24 (17), 2489-2499.
66. Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y., Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Letters 2014, 14 (5), 2522-2527.
67. Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials 2016, 1 (3), 1-15.
68. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
69. Kitagawa, S.; Kitaura, R.; Noro, S. i., Functional porous coordination polymers. Angewandte Chemie International Edition 2004, 43 (18), 2334-2375.
70. Rowsell, J. L.; Yaghi, O. M., Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials 2004, 73 (1-2), 3-14.
71. Férey, G., Hybrid porous solids: past, present, future. Chemical Society Reviews 2008, 37 (1), 191-214.
72. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1477-1504.
73. Mason, J. A.; Veenstra, M.; Long, J. R., Evaluating metal–organic frameworks for natural gas storage. Chemical Science 2014, 5 (1), 32-51.
74. Li, G.; Kobayashi, H.; Taylor, J. M.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Toh, S.; Matsumura, S., Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. Nature Materials 2014, 13 (8), 802-806.
75. Ma, S.; Zhou, H.-C., Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications 2010, 46 (1), 44-53.
76. Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha, O. K.; Hupp, J. T., Postsynthetic tuning of metal–organic frameworks for targeted applications. Accounts of Chemical Research 2017, 50 (4), 805-813.
77. Cohen, S. M., Postsynthetic methods for the functionalization of metal–organic frameworks. Chemical Reviews 2012, 112 (2), 970-1000.
78. Majewski, M. B.; Peters, A. W.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K., Metal–organic frameworks as platform materials for solar fuels catalysis. ACS Energy Letters 2018, 3 (3), 598-611.
79. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal–organic framework materials as catalysts. Chemical Society Reviews 2009, 38 (5), 1450-1459.
80. Yang, Q.; Xu, Q.; Jiang, H.-L., Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews 2017, 46 (15), 4774-4808.
81. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–shell nanocrystal@ ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. Journal of the American Chemical Society 2012, 134 (35), 14345-14348.
82. Burtch, N. C.; Jasuja, H.; Walton, K. S., Water stability and adsorption in metal–organic frameworks. Chemical Reviews 2014, 114 (20), 10575-10612.
83. Li, J.-H.; Wang, Y.-S.; Chen, Y.-C.; Kung, C.-W., Metal–organic frameworks toward electrocatalytic applications. Applied Sciences 2019, 9 (12), 2427.
84. Liberman, I.; Shimoni, R.; Ifraemov, R.; Rozenberg, I.; Singh, C.; Hod, I., Active-site modulation in an Fe-porphyrin-based metal–organic framework through ligand axial coordination: Accelerating electrocatalysis and charge-transport kinetics. Journal of the American Chemical Society 2020, 142 (4), 1933-1940.
85. Chen, Y.-C.; Chiang, W.-H.; Kurniawan, D.; Yeh, P.-C.; Otake, K.-i.; Kung, C.-W., Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Applied Materials & Interfaces 2019, 11 (38), 35319-35326.
86. Su, F.; Zhang, S.; Ji, H.; Zhao, H.; Tian, J.-Y.; Liu, C.-S.; Zhang, Z.; Fang, S.; Zhu, X.; Du, M., Two-dimensional zirconium-based metal–organic framework nanosheet composites embedded with Au nanoclusters: A highly sensitive electrochemical aptasensor toward detecting cocaine. ACS Sensors 2017, 2 (7), 998-1005.
87. Mallick, A.; Liang, H.; Shekhah, O.; Jia, J.; Mouchaham, G.; Shkurenko, A.; Belmabkhout, Y.; Alshareef, H. N.; Eddaoudi, M., Made-to-order porous electrodes for supercapacitors: MOFs embedded with redox-active centers as a case study. Chemical Communications 2020, 56 (12), 1883-1886.
88. Kung, C.-W.; Otake, K.; Buru, C. T.; Goswami, S.; Cui, Y.; Hupp, J. T.; Spokoyny, A. M.; Farha, O. K., Increased electrical conductivity in a mesoporous metal–organic framework featuring metallacarboranes guests. Journal of the American Chemical Society 2018, 140 (11), 3871-3875.
89. Huang, Y.; Tao, C.-a.; Chen, R.; Sheng, L.; Wang, J., Comparison of fabrication methods of metal-organic framework optical thin films. Nanomaterials 2018, 8 (9), 676.
90. Kung, C.-W.; Chang, T.-H.; Chou, L.-Y.; Hupp, J. T.; Farha, O. K.; Ho, K.-C., Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications 2015, 58, 51-56.
91. Johnson, B. A.; Bhunia, A.; Fei, H.; Cohen, S. M.; Ott, S., Development of a UiO-type thin film electrocatalysis platform with redox-active linkers. Journal of the American Chemical Society 2018, 140 (8), 2985-2994.
92. Mohammad-Pour, G. S.; Hatfield, K. O.; Fairchild, D. C.; Hernandez-Burgos, K.; Rodríguez-López, J.; Uribe-Romo, F. J., A Solid-Solution Approach for Redox Active Metal–Organic Frameworks with Tunable Redox Conductivity. Journal of the American Chemical Society 2019, 141 (51), 19978-19982.
93. Stassen, I.; Styles, M.; Van Assche, T.; Campagnol, N.; Fransaer, J.; Denayer, J.; Tan, J.-C.; Falcaro, P.; De Vos, D.; Ameloot, R., Electrochemical film deposition of the zirconium metal–organic framework UiO-66 and application in a miniaturized sorbent trap. Chemistry of Materials 2015, 27 (5), 1801-1807.
94. Hendon, C. H.; Tiana, D.; Walsh, A., Conductive metal–organic frameworks and networks: fact or fantasy? Physical Chemistry Chemical Physics 2012, 14 (38), 13120-13132.
95. Sun, L.; Campbell, M. G.; Dincă, M., Electrically conductive porous metal–organic frameworks. Angewandte Chemie International Edition 2016, 55 (11), 3566-3579.
96. Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P., Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343 (6166), 66-69.
97. Lin, S.; Usov, P. M.; Morris, A. J., The role of redox hopping in metal–organic framework electrocatalysis. Chemical Communications 2018, 54 (51), 6965-6974.
98. Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S. l.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A. n.; Dincă, M., High electrical conductivity in Ni3 (2, 3, 6, 7, 10, 11-hexaiminotriphenylene) 2, a semiconducting metal–organic graphene analogue. Journal of the American Chemical Society 2014, 136 (25), 8859-8862.
99. Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F., New porous crystals of extended metal-catecholates. Chemistry of Materials 2012, 24 (18), 3511-3513.
100. Goswami, S.; Ray, D.; Otake, K.-i.; Kung, C.-W.; Garibay, S. J.; Islamoglu, T.; Atilgan, A.; Cui, Y.; Cramer, C. J.; Farha, O. K., A porous, electrically conductive hexa-zirconium (IV) metal–organic framework. Chemical Science 2018, 9 (19), 4477-4482.
101. Usov, P. M.; Fabian, C.; D'Alessandro, D. M., Rapid determination of the optical and redox properties of a metal–organic framework via in situ solid state spectroelectrochemistry. Chemical Communications 2012, 48 (33), 3945-3947.
102. Chang, Y.-S.; Li, J.-H.; Chen, Y.-C.; Ho, W. H.; Song, Y.-D.; Kung, C.-W., Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochimica Acta 2020, 347, 136276.
103. Chang, T.-E.; Chuang, C.-H.; Kung, C.-W., An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite. Electrochemistry Communications 2021, 122, 106899.
104. Shen, C.-H.; Chen, Y.-H.; Wang, Y.-C.; Chang, T.-E.; Chen, Y.-L.; Kung, C.-W., Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Physical Chemistry Chemical Physics 2022.
105. Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong, J.; Wang, Y.; Li, H.; Chen, Y.; Wang, B., Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. Journal of the American Chemical Society 2015, 137 (15), 4920-4923.
106. Shao, L.; Wang, Q.; Ma, Z.; Ji, Z.; Wang, X.; Song, D.; Liu, Y.; Wang, N., A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites. Journal of Power Sources 2018, 379, 350-361.
107. Song, Y. D.; Ho, W. H.; Chen, Y. C.; Li, J. H.; Wang, Y. S.; Gu, Y. J.; Chuang, C. H.; Kung, C. W., Selective Formation of Polyaniline Confined in the Nanopores of a Metal–Organic Framework for Supercapacitors. Chemistry–A European Journal 2021, 27 (10), 3560-3567.
108. DeStefano, M. R.; Islamoglu, T.; Garibay, S. J.; Hupp, J. T.; Farha, O. K., Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chemistry of Materials 2017, 29 (3), 1357-1361.
109. Wang, Y. S.; Chen, Y. C.; Li, J. H.; Kung, C. W., Toward Metal–Organic‐Framework‐Based Supercapacitors: Room‐Temperature Synthesis of Electrically Conducting MOF‐Based Nanocomposites Decorated with Redox‐Active Manganese. European Journal of Inorganic Chemistry 2019, 2019 (26), 3036-3044.
110. Furukawa, H.; Gandara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water adsorption in porous metal–organic frameworks and related materials. Journal of the American Chemical Society 2014, 136 (11), 4369-4381.
111. Kung, C.-W.; Wang, T. C.; Mondloch, J. E.; Fairen-Jimenez, D.; Gardner, D. M.; Bury, W.; Klingsporn, J. M.; Barnes, J. C.; Van Duyne, R.; Stoddart, J. F., Metal–organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism. Chemistry of Materials 2013, 25 (24), 5012-5017.
112. Chuang, C.-H.; Li, J.-H.; Chen, Y.-C.; Wang, Y.-S.; Kung, C.-W., Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. The Journal of Physical Chemistry C 2020, 124 (38), 20854-20863.
113. Wang, Y.-S.; Liao, J.-L.; Li, Y.-S.; Chen, Y.-C.; Li, J.-H.; Ho, W. H.; Chiang, W.-H.; Kung, C.-W., Zirconium-Based Metal–Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. ACS Applied Nano Materials 2020, 3 (2), 1448-1456.
114. Lammert, M.; Reinsch, H.; Murray, C.; Wharmby, M.; Terraschke, H.; Stock, N., Synthesis and structure of Zr (iv)-and Ce (iv)-based CAU-24 with 1, 2, 4, 5-tetrakis (4-carboxyphenyl) benzene. Dalton Transactions 2016, 45 (47), 18822-18826.
115. Lyu, J.; Zhang, X.; Otake, K.-i.; Wang, X.; Li, P.; Li, Z.; Chen, Z.; Zhang, Y.; Wasson, M. C.; Yang, Y., Topology and porosity control of metal–organic frameworks through linker functionalization. Chemical science 2019, 10 (4), 1186-1192.
116. Han, Y.; Liu, M.; Li, K.; Zuo, Y.; Wei, Y.; Xu, S.; Zhang, G.; Song, C.; Zhang, Z.; Guo, X., Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm 2015, 17 (33), 6434-6440.
117. Villoria‐del‐Álamo, B.; Rojas‐Buzo, S.; García‐García, P.; Corma, A., Zr‐MOF‐808 as Catalyst for Amide Esterification. Chemistry–A European Journal 2021, 27 (14), 4588-4598.
118. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society 2008, 130 (42), 13850-13851.
119. Bard, A. J.; Faulkner, L., Electrochemical instrumentation. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, NY, USA 2001, 632-658.
120. Pargoletti, E.; Salvi, A.; Giordana, A.; Cerrato, G.; Longhi, M.; Minguzzi, A.; Cappelletti, G.; Vertova, A., ORR in non-aqueous solvent for Li-air batteries: The influence of doped MnO2-nanoelectrocatalyst. Nanomaterials 2020, 10 (9), 1735.
121. Zhang, H.; Wang, J.; Chen, Y.; Wang, Z.; Wang, S., Long-term cycling stability of polyaniline on graphite electrodes used for supercapacitors. Electrochimica Acta 2013, 105, 69-74.
122. Rahmanifar, M.; Mousavi, M.; Shamsipur, M.; Riahi, S., A study on the influence of anionic surfactants on electrochemical degradation of polyaniline. Polymer Degradation and Stability 2006, 91 (12), 3463-3468.
123. Planes, G.; Rodríguez, J.; Miras, M.; García, G.; Pastor, E.; Barbero, C., Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation. Physical Chemistry Chemical Physics 2010, 12 (35), 10584-10593.
124. Tan, Q.; Xu, Y.; Yang, J.; Qiu, L.; Chen, Y.; Chen, X., Preparation and electrochemical properties of the ternary nanocomposite of polyaniline/activated carbon/TiO2 nanowires for supercapacitors. Electrochimica Acta 2013, 88, 526-529.
125. Zhang, H.; Zhao, Q.; Zhou, S.; Liu, N.; Wang, X.; Li, J.; Wang, F., Aqueous dispersed conducting polyaniline nanofibers: promising high specific capacity electrode materials for supercapacitor. Journal of Power Sources 2011, 196 (23), 10484-10489.
126. Zhou, S.; Zhang, H.; Zhao, Q.; Wang, X.; Li, J.; Wang, F., Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors. Carbon 2013, 52, 440-450.
127. Zhou, S.; Zhang, H.; Wang, X.; Li, J.; Wang, F., Sandwich nanocomposites of polyaniline embedded between graphene layers and multi-walled carbon nanotubes for cycle-stable electrode materials of organic supercapacitors. RSC Advances 2013, 3 (6), 1797-1807.
128. Wang, G.; Zhang, L.; Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2012, 41 (2), 797-828.
129. Liu, X.; Wen, N.; Wang, X.; Zheng, Y., A high-performance hierarchical graphene@ polyaniline@ graphene sandwich containing hollow structures for supercapacitor electrodes. ACS Sustainable Chemistry & Engineering 2015, 3 (3), 475-482.