簡易檢索 / 詳目顯示

研究生: 顏士傑
Yen, Shih-Jie
論文名稱: 以近場通訊技術設計具多層次授權與次數及時效許可證管理的門禁平台
Multilayered Delegable Access Control Platform with Times and Period Token Management by Near Field Communication
指導教授: 李威勳
Lee, Wei-Hsun
學位類別: 碩士
Master
系所名稱: 管理學院 - 電信管理研究所
Institute of Telecommunications Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 多層次授權時效與次數性許可證離線轉移近場通訊門禁管理
外文關鍵詞: Multilayer Delegation, Times and Period Token Management, Offline Transfer, NFC, Access Control.
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 安全是門禁的核心價值,便利是人們追求的目標。現今門禁系統除了運用於居家之外,也有公司、民宿、租賃等協作環境,這些協作環境的成員常變動,這些解鎖策略的管理會變得非常困難。在這種情況下,透過權力下放的概念可提供門禁系統的靈活性,該概念即為授權。但過往門禁管理模式大多有回收鑰匙的困難,如金屬鑰匙需要擔心鑰匙被拷貝,電子鍵盤鎖需要置換整個密碼,電子標籤技術需要即時更新門鎖端黑名單。可見一個理想的門禁系統必須同時擁有四種特色:安全、解鎖便利、回收便利及可轉授權。
    因此,本研究提出一個理想的半離線式(semi-offlin)身分驗證模型─多層次授權門禁平台模型(Multilayered Delegable Access Control Model,MDAC),該模型利用RSA加密技術、連鎖綁定硬體序號的概念,設計出一套可應用於多層次授權的身分驗證模型之系統結構。本研究的鑰匙結構可有效避免被拷貝、竄改等安全風險,但同時保有「讓用戶無須經過後台允許,即可自行授權」的特色。驗證解鎖、撤銷鑰匙也是offline情況下也能運作。該系統僅發鑰匙、設黑名單(回收鑰匙第二道防線)與系統校時是online下進行,故本系統為semi-offline的門禁管理機制。此外,MDAC Model的鑰匙具有時效、次數性的生命週期,無論是驗證解鎖或再授權皆會受到生命週期約束,這讓管理者更易於管理鑰匙,且讓MDAC Model更能運用於所有的門禁情境。

    Safety and convenience are two key factors of the access control systems. In semi-open environments, it’s difficult to manage access control due to the variety of users. In this case, multilayered delegation provides flexibility in access control systems. But in past access control systems, keys revocation is the major issue. So an ideal access control system require four characteristics: safe, convenient unlocking, convenient revocation and delegation ability.
    However, there are disadvantages in all of related works, such as the demand of Internet, no multilayered delegation, the lack of key life cycle and incomplete revocation. To improve the weaknesses of related works, provide administrators facilitation to manage keys and opearte the model in all scenarios. This study proposes Multilayered Delegable Access Control Model (MDAC), which combines the features of semi-offline architecture and multi-level authorization mechanism. It’s designed by RSA encryption, a chain of binding hardware serial numbers, and the system architecture can be applied to multi-level delegation. This work can not only effectively avoid key copying, tampering and other security risks, but execute delegation ability without going through the server. Furthermore, it’s possible to unlock the doors and revoke the key when smartphones are offline, and has the feature of key life cycle management including key valid period and access times control. User’s key is always limited by the life cycle whenever he/she is unlocking the door or delegating the key to someone. Our proposal provides administrators facilitation to manage keys and is able to apply to all access control scenarios.

    摘要 I 誌謝 VI 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 4 1.3研究流程 7 1.4符號定義表 8 第二章 文獻回顧 9 2.1 身分驗證模型相關研究 9 2.1.1 Online式身分驗證模型 9 2.1.2 Offline式身分驗證模型 11 2.1.3 白名單驗證機制 12 2.1.4黑名單屏蔽機制 13 2.2以角色為基礎的存取控制模型 14 2.2.1基本模型(RBAC0) 14 2.2.2繼承關係模型(RBAC1) 15 2.2.3限制條件模型(RBAC2) 16 2.2.4合併模型(RBAC3) 16 2.3 NFC技術簡介 17 2.3.1 NFC特色 17 2.3.2安全元件介紹 17 2.3.3身分驗證運用 18 2.4 非對稱式RSA加密演算法 19 2.5 小結 20 第三章 多層次授權門禁平台模型 24 3.1 需求與問題分析 24 3.2情境流程與研究假設 25 3.2.1情境流程 26 3.2.2系統概念與假設 28 3.3 使用案例 29 3.3.1授權 30 3.3.2解鎖 30 3.3.3 P2P撤銷 30 3.3.4線上撤銷 30 3.4 設計概念 31 3.4.1資料結構設計 31 3.4.2系統流程運作 39 3.4.3 Key的產生與授權 40 3.4.4解鎖詳細流程 43 3.4.5授權詳細流程 45 3.4.6 P2P撤銷詳細流程 47 第四章 電子門禁平台實作 48 4.1 開發工具 48 4.2安全晶片的卡片程式設計(Applet) 49 4.3 電子門禁平台實作 51 4.3.1卡片端程式(Applet) 51 4.3.2手機端App 52 4.3.3門鎖端門禁驗證程式 54 4.3.4時效與次數驗證 54 4.3.5實作成果 58 第五章 安全性與效能分析 62 5.1 安全性分析 62 5.2 效能分析 63 第六章 結論與未來研究 70 6.1 結論 70 6.2 未來市場分析 72 6.3 未來研究計畫 73 參考文獻 75 附錄一 78 附錄二 79

    1. American National Standards Institute. (1998). AMERICAN NATIONAL STANDARD X9.62-1998 Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA).
    2. Bailey, D., & Paar, C. (2001). Efficient Arithmetic in Finite Field Extensions with Application in Elliptic Curve Cryptography. Journal of Cryptology, 14, pp. 153-176.
    3. Cheong, S.-N., Ling, H.-C., & Teh, P.-L. (2014, 06 01). Secure Encrypted Steganography Graphical Password scheme for Near Field Communication smartphone access control system. Expert Systems with Applications, 41(7), pp. 3561-3568.
    4. DIGITIMES企劃. (2014年05月26日). NFC技術趨勢與行動支付未來. 台灣: DIGITIMES商情電子報. 擷取自 http://www.digitimes.com.tw/tw/b2b/Seminar/shwnws_new.asp?CnlID=18&cat=99&product_id=051A30515&id=0000379872_3IF93Y976OJOX13CTTNYZ
    5. Dmitrienko, A., Sadeghi, A.-R., Tamrakar, S., & Wachsmann, C. (2012). SmartTokens: Delegable Access Control with NFC-enabled Smartphones. 5th International Conference on Trust & Trustworthy Computing (TRUST’12), (pp. 1-23).
    6. Johnson, D., Menezes, A., & Vanstone, S. (1999). The Elliptic Curve Digital Signature Algorithm (ECDSA). Centre for Applied Cryptographic Research (CACR), University of Waterloo.
    7. Jung, K., & Park, S. (2013, 7). Context-Aware Role Based Access Control Using User Relationship. International Journal of Computer Theory and Engineering, 5(3), pp. 533-537.
    8. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A., Thomé, E., Bos, J., . . . Zimmermann, P. (2010). Factorization of a 768-bit RSA modulus. CRYPTO'10 Proceedings of the 30th annual conference on Advances in cryptology, (pp. 333-350).
    9. Kotla, R., Rodeheffer, T., Roy, I., Stuedi, P., & Wester, B. (2012). Pasture: Secure Offline Data Access Using Commodity Trusted Hardware. 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12), (pp. 321-334).
    10. Liao, Y.-P., & Hsiao, C.-M. (2014, 7). A secure ECC-based RFID authentication scheme integrated with ID-verifier transfer protocol. Ad Hoc Networks, 18, pp. 133-146.
    11. Menezes, A. (1993). Elliptic Curve Public Key Cryptosystems. Kluwer.
    12. Mohy, N. N., Mokhtar, H. M., & El-Sharkawi, M. E. (2015). Delegation Enabled Provenance-Based Access Control Model. Science and Information Conference, (pp. 28-30).
    13. NIST. (2001). FIPS 186-2, Digital Signature Standard (DSS).
    14. Nurbek, S., Aybek, N., & Gulnaz, B. (2014, 7). Access Control and Management System Based on NFC-Technology by the Use of Smart Phones as Keys. Middle East Journal of Scientific Research, 21(7), pp. 1130-1135.
    15. Petrov, V., Edelev, S., Komar, M., & Koucheryavy, Y. (2014). Towards the era of wireless keys: How the IoT can change authentication paradigm. IEEE World Forum on Internet of Things (WF-IoT), (pp. 51-56).
    16. Sandhu, R., Coyne, E., Feinstein, H., & Youman, C. (1996, 2). Role-Based Access Control Models. IEEE Computer, 29(2), pp. 38-47.
    17. Silverman, J., & Tate, J. (1992). Rational Points on Elliptic Curves. Springer.
    18. Y-FA TECHNOLOGY INC. (2015, 11). NFC Introduction. Retrieved from Y-FA TECHNOLOGY: http://www.yfa.com.tw/nfc-a01.asp
    19. 中商情報網. (2016年6月17日). 2016年全球門禁訪問控制市場調研分析. 擷取自 http://www.askci.com/news/chanye/20160617/10085930291.shtml
    20. 吳委政. (2013). NFC電子票證平台與P2P票證安全轉移之研究. 台灣: 國立成功大學電信管理研究所.
    21. 孟令強, 關勇, 張向紅, 龔麗君, & 郭浩波. (2010). 基於可信計算的應用程序白名單管理系統. 計算機安全(10), 頁 16-17.
    22. 楊中皇. (2005年1月). 橢圓曲線密碼系統軟體實現技術之探討. Communications of the CCISA, 11(1), 頁 1-11.
    23. 趙波. (2014). 一手掌握Android NFC開發技術. 台北: 佳魁資訊.
    24. 蘇偉慶, & 黃建隆. (2012年9月). 行動支付安全元件(Secure Element)之存取控制. 財金資訊季刊, 72, 45-52.


    下載圖示 校內:2021-08-25公開
    校外:2021-08-25公開
    QR CODE