簡易檢索 / 詳目顯示

研究生: 習甘南
Seemuangngam, Apinan
論文名稱: 都市化的時空動態對都市洪⽔風險影響的綜合分析架構-泰國 Nakhon Ratchasima 的案例研究
A Comprehensive Framework for Analyzing Spatial-Temporal Urbanization Dynamics on Urban Flood Risk: A Case Study in Nakhon Ratchasima, Thailand
指導教授: 林漢良
Lin, Han-Liang
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 171
中文關鍵詞: 空間不均洪水風險特徵城市洪水風險風險三角BiLISA2D 洪水模擬模型無規劃都市化
外文關鍵詞: Spatial mismatch, Flood risk characteristics, Urban flood risk, Risk triangle, BiLISA, 2D flood simulation model, Unplanned urbanization
相關次數: 點閱:34下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都市化是一個涉及土地利用和人口變化的多維度複雜過程。隨著都市化的持續擴張,伴隨的是自然環境的快速消耗轉換以滿足日益增長人口的基本需求。這種增長主要受到城市人口、資源與經濟活動的推動,進而促進產業與經濟轉型創新和社會互動以增加城市的可居住性。然而,都市化也帶來了諸多負面影響,例如土地利用的不經濟、都市蔓延(urban sprawl)及高人口密度等問題。這些轉變經常破壞人為建成環境與自然環境的生態系統,而導致自然災害風險尤其是都市洪患風險的加劇。儘管過去已有許多關於洪患風險的防減災研究,但對於城市發展與洪患風險之間的關聯性仍然理解有限。都市化與洪患風險之間的複雜因素尚未被充分探討,特別是在都市化動態的影響方面。
    本研究旨在理解城市發展與洪患風險之間的關係,重點關注都市化如何影響快速成長城市的洪患易發性。研究分析都市洪患風險的關鍵特徵以及都市化的動態變化,強調風險元素、地理位置特性與洪患事件在塑造都市洪患風險中的作用。本研究提出了一個整合定量方法與地理資訊系統(GIS)空間分析技術的綜合框架,包括雙變量空間自相關(bivariate spatial autocorrelation)及 K-means 分群技術,以評估空間分佈模式及洪患風險強度特徵。研究方法包含四個步驟:(1) 確定都市洪患風險因素以量化洪患風險要素;(2) 使用二維洪患模擬模型(2D flood simulation model)來模擬都市化所導致地文變化的洪患災害圖;(3) 定義洪患風險並建立洪患風險地圖操做模型;(4) 應用雙變量局部空間自相關(BiLISA)來探討都市化與洪患風險之間的空間關聯性,以分析空間及時間的紅患風險趨勢變遷;並透過 K-means 分群技術界定洪患風險特徵,以釐清都市化與都市洪患風險之間的空間動態關係。本框架中的「風險要素對立因子法」(Opposite Factors of the Risk Elements Method)有助於改善風險規劃及決策制定。透過三種整合方法分析都市洪患風險,可針對特定洪患動態量身訂製應對策略,以增強城市韌性。
    本研究以泰國呵叻府(Nakhon Ratchasima)為案例,利用都市洪患風險映射數據來評估都市化的影響。該框架可為未來可持續城市規劃與發展的決策過程提供資訊,且不需要大規模數據集,使其能適應當數據稀缺時的洪患分析需求。本研究的貢獻在於釐清都市化與都市洪患風險之間的複雜關係。通過探討這些關聯性而發展出一個全面的量化分析框架,以深入理解都市化如何影響呵叻府的都市洪患風險。
    該框架提供了對都市洪患風險動態的深入見解,特別強調快速都市化如何擾亂自然水流並擴大高風險區域。儘管某些案例中災害嚴重程度有所下降,但由於高風險區域的擴大,洪患風險仍在增加,尤其是在人口密集及低窪地區。城市擴張往往延伸至高風險區域,原因包括土地使用限制、規劃缺陷及監管約束,這些因素降低了城市的適應力並增加其脆弱性。
    在呵叻府,計劃內與計劃外的發展皆對都市化進程產生了重大影響。政府於 2011 年推出第二次城市綜合土地使用法規,以促進經濟發展,最初確實推動了城市擴張,使指定發展區域增加 500%。然而,由於缺乏綜合性土地規劃及法規執行,導致城市擴展失控。這種擴張超出了城市邊界,特別是在北部的洪患易發區。這一趨勢主要受到南部的國有土地影響,其中包括軍事區域與農業改革區,這些地區因法律限制無法開發,迫使城市發展向更具風險及高暴露度的區域擴展。儘管該框架具備優勢,但仍受限於數據可得性、尺度及模型簡化,可能影響評估準確性,並可能忽略關鍵風險趨勢。
    未來研究應聚焦於三個策略領域,以應對這些挑戰。首先,提高數據能力至關重要,應利用先進技術來提升數據收集的準確性、效率及即時監測能力。其次,透過縱向研究分析時間動態變化,能夠深入了解洪患風險如何隨著城市發展、土地利用變化及環境條件而演變。最後,擴展風險評估方法,例如引入多準則分析(multi-criteria analysis),可對不同風險因子進行更全面的評估,確保基於數據的風險管理。此外,推動以社區為中心的韌性發展至關重要,強調公眾積極參與洪患風險規劃與準備工作。整合氣候適應策略將進一步增強該框架應對未來氣候風險的能力。同時,制定政策導向解決方案並鼓勵跨學科合作,將有助於建立更具韌性、可持續性及適應性的城市系統。最終,這些努力將顯著提升城市韌性,幫助城市應對日益嚴峻的都市洪患與氣候變遷挑戰。

    Urbanization is a complex and multi-dimensional process involving land use and demographic changes. As cities continue to grow, they consume natural resources quickly to satisfy the basic needs of their growing residents. Consequently, this growth is mainly driven by urban citizens, resources, and the economy, which has resulted in advancements in knowledge, innovation, and social activities in an attempt to enhance urban livability. However, urbanization also has negative effects like inefficient land use, urban sprawl, and high population density. These challenges disrupt the local and urban ecosystems and increase the risk of natural disasters, particularly flooding. Despite previous studies on flood risk prevention and mitigation, there remains a limited understanding of the connection between urban development and flood risk within cities. The complex factors linking urbanization to flood risk are not fully understood, especially regarding urbanization dynamics.
    The study aims to understand the relationship between urban development and flood risk, focusing on how urbanization patterns influence flood susceptibility in rapidly growing cities. It examines key characteristics of urban flood risk and urbanization dynamics, emphasizing the roles of at-risk elements, location attributes, and flood events in shaping urban flood risk. The study proposes a comprehensive framework, integrating quantitative methods with GIS-based spatial analysis techniques, including bivariate spatial autocorrelation and K-means clustering, to assess the spatial distribution patterns and flood risk intensity characteristics. The methodology consists of four steps: (1) identifying three essential urban flood risk factors, especially using a 2D flood simulation model that aims to generate flood disaster maps; (2) quantifying flood risk elements relative to two key factors in each element; (3) creating flood risk maps to monitor spatial patterns and trends; and (4) applying BiLISA to investigate the spatial correlation between urbanization and flood risk, along with defining flood risk characteristics through K-means clustering, aims to clarify the spatial dynamics between urbanization and urban flood risks. This framework’s Opposite Factors of the Risk Elements Method can improve risk planning and decision-making. Examining urban flood risk through three integrated approaches customizes strategies to address specific flood dynamics, enhancing resilience.
    The research employs a case study in Nakhon Ratchasima, Thailand, using data on urban flood risk mapping to assess urbanization's impact. This framework can then inform inclusive decision-making processes in future sustainable urban planning and development without the need for large datasets, making it adaptable in data-scarce environments. The contribution of this research is grounded in its potential to clarify the complexities surrounding the relationship between urbanization and urban flood risk. By addressing these complexities, the study presents a comprehensive quantitative framework, aiming to provide guidance for a deeper insight into how urbanization influences flood risk in the urban areas of Nakhon Ratchasima.
    The framework provides insights into the dynamics of urban flood risk, emphasizing how rapid urbanization disrupts natural water flow and expands hazard-prone areas. Although disaster severity has decreased in some cases, increased hazard exposure has heightened flood risks, especially in densely populated and low-lying regions. Urban growth frequently extends into high-risk zones due to land use limitations, planning deficiencies, and regulatory constraints, which reduce resilience and increase vulnerability.
    Both planned and unplanned development have significantly influenced urbanization in Nakhon Ratchasima. The second set of comprehensive city land use regulations, designed to promote economic growth, initially facilitated urban expansion by enlarging designated development areas by 500%. However, the lack of comprehensive land use planning and regulatory enforcement since 2011 has led to rapid and uncontrolled growth. As a result, this expansion extends beyond city boundaries, particularly northward into flood-prone zones. This trend is mainly shaped by state-owned land to the south, including military zones and agricultural reform areas legally restricted from development, limiting growth options and pushing development into more hazard and exposure areas. Despite its strengths, the framework has limitations concerning data availability, scale, and model simplifications, which may impact assessment accuracy and miss key risk trends.
    Future research should focus on three strategic areas to address these challenges. Improving data capabilities is essential, as is using advanced technologies to enhance data collection, accuracy, efficiency, and real-time monitoring. Studying temporal dynamics through longitudinal research will provide insights into how flood risks evolve and change over time, influenced by urban growth, land use changes, and environmental conditions. Expanding risk assessment approaches by including multi-criteria analysis will enable a more comprehensive evaluation of different risk factors, ensuring thorough, data-driven risk management. Moreover, promoting community-centered resilience is crucial, highlighting the importance of active public involvement in flood risk planning and preparedness. Integrating climate adaptation strategies will strengthen the framework’s ability to handle future climate-related risks effectively. Developing policy-driven solutions and encouraging interdisciplinary collaboration will also help create more robust, sustainable, and adaptable urban systems. Ultimately, these efforts will significantly improve urban resilience, helping cities manage the growing challenges of urban flooding and climate change.

    摘要 ii ABSTRACT iv ACKNOWLEDGMENTS vi TABLE OF CONTENTS vii LIST OF TABLES ix LIST OF FIGURES x CHAPTER 1. RESEARCH BACKGROUND 1 1.1. Introduction 1 1.2. Research Question and Objectives 3 1.3. Methodological Approach 4 1.4. Study Area 5 1.5. Dissertation Structure 11 CHAPTER 2. LITERATURE REVIEW 12 2.1. Urbanization 12 2.1.1. Context of Urbanization 12 2.1.2. Characteristics of Contemporary Urbanization 15 2.1.3. Urbanization in Developing Countries 16 2.1.4. Urbanization in Thailand 18 2.1.5. Impacts of Urbanization on Urban Flood Risk 20 2.1.6. Summary 22 2.2. Urban Flood Risk 23 2.2.1. Risk Triangle 24 2.2.2. Understanding Flood Risk Elements 25 2.2.3. Revising Flood Risk Elements 30 2.2.4. Flood Risk Factors and Variable 36 2.3. Summary 39 CHAPTER 3. RESEARCH METHODOLOGY 41 3.1. Research Approach 41 3.2. Data Sources and Preparation 42 3.2.1. River basin and Sub-basin in Thailand 42 3.2.2. Water Networks 42 3.2.3. Road Networks 43 3.2.4. Digital Elevation Model (DEM) 43 3.2.5. Land Covers 44 3.2.6. Rainfall intensity 44 3.2.7. Social, Population, and Economic 45 3.3. Urban Flood Risk Quantification 47 3.3.1. Urban Flood Risk Triangle Index 49 3.3.2. Urban Flood Risk Elements 49 3.3.3. Urban Flood Risk Factors 50 3.3.4. Criteria and weight 53 3.4. Data Analysis and Interpretation 54 CHAPTER 4. URBANIZATION IN NAKHON RATCHASIMA 55 4.1. Nakhon Ratchasima 55 4.2. Classifying Land Cover in Nakhon Ratchasima 56 4.3. Urbanization In Nakhon Ratchasima 59 4.3.1. Built-up Areas 59 4.3.2. Population Density 64 4.3.3. Urbanization Growth 66 4.4. Distribution of urbanization: pattern and trend 69 4.5. Summary 71 CHAPTER 5. FLOOD SIMULATION MODEL 72 5.1. The Physiographic Drainage-Inundation Model 72 5.2. Lamtakong Watershed 73 5.3. Data Preparation 75 5.3.1. Partitioning Computing Cell 75 5.3.2. Land Cover Classification 77 5.3.3. Manning Roughness Coefficient 79 5.3.4. Barrier Recognition 80 5.3.5. Rain Data 82 5.4. Result 84 5.4.1. Flood Depth and Duration in 2000 84 5.4.2. Flood Disaster in 2010 86 5.4.3. Flood Disaster in 2020 88 5.4.4. Flood Disaster Characteristics in The Study Area 91 5.5. Summary 94 CHAPTER 6. URBAN FLOOD RISK IN NAKHON RATCHASIMA 95 6.1. Urban Flood Risk Factors 95 6.1.1. Elements at Risk 95 6.1.2. Spatial Attributes 97 6.1.3. Disaster 98 6.2. Urban Flood Risk Elements 100 6.2.1. Flood Hazard Index 100 6.2.2. Flood Exposure 101 6.2.3. Flood Vulnerability 103 6.3. Urban Flood Risk Map 105 6.3.1. Spatial Analysis of Urban Flood Risk 108 6.3.2. Distribution of urban flood risk characteristics patterns 111 6.4. Summary 113 CHAPTER 7. FLOOD RESILIENCE STRATEGIES FOR NAKHON RATCHASIMA 115 7.1. Comparing Urbanization and Urban Flood Risk Trend 116 7.2. Spatial Mismatch in Nakhon Ratchasima 119 7.3. Land Use Planning in Nakhon Ratchasima 121 7.4. Topography Changed on Nakhon Ratchasima 123 7.5. Flood resilience strategies in Nakhon Ratchasima 125 7.5.1. UFRTI and The Opposite Factors of Risk Elements Method 126 7.5.2. Flood Resilience Strategies Improvement 131 CHAPTER 8. CONCLUSION 133 REFERENCES 136 APPENDIX 145

    Akukwe, T. I., & Ogbodo, C. (2015). Spatial analysis of vulnerability to flooding in Port Harcourt metropolis, Nigeria. SAGE Open, 5(1). https://doi.org/10.1177/2158244015575558
    Al, A., Muktarun, B., Supria, I., Baky, M. A. Al, Islam, M., & Paul, S. (2020). Flood Hazard , Vulnerability and Risk Assessment for Different Land Use Classes Using a Flow Model. Earth Systems and Environment, 4(1), 225–244. https://doi.org/10.1007/s41748-019-00141-w
    Alam, A., Bhat, M. S., Farooq, H., Ahmad, B., Ahmad, S., & Sheikh, A. H. (2018). Flood risk assessment of Srinagar city in Jammu and Kashmir, India. International Journal of Disaster Resilience in the Built Environment, 9(2), 114–129. https://doi.org/10.1108/IJDRBE-02-2017-0012
    Alphen, J. Van, Martini, F., Loat, R., Slomp, R., Passchier, R., Van Alphen, J., Martini, F., Loat, R., Slomp, R., & Passchier, R. (2009). Flood risk mapping in Europe, experiences and best practices. Journal of Flood Risk Management, 2(4), 285–292. https://doi.org/10.1111/j.1753-318X.2009.01045.x
    Amira, R. F., Surjandari, I., & Laoh, E. (2020). Jakarta Flood Risk Mapping Using Index-based Approach and Spatial Analysis. 7th International Conference on ICT for Smart Society: AIoT for Smart Society, ICISS 2020 - Proceeding. https://doi.org/10.1109/ICISS50791.2020.9307583
    Amirzadeh, M., Sobhaninia, S., & Sharifi, A. (2022). Urban resilience: A vague or an evolutionary concept? Sustainable Cities and Society, 81(February), 103853. https://doi.org/10.1016/j.scs.2022.103853
    Antrop, M. (2004). Landscape change and the urbanization process in Europe. Landscape and Urban Planning, 67(1–4), 9–26. https://doi.org/10.1016/S0169-2046(03)00026-4
    Apollonio, C., Bruno, M. F., Iemmolo, G., Molfetta, M. G., & Pellicani, R. (2020). Flood Risk Evaluation in Ungauged Coastal Areas : Water (Switzerland), 5(12), 1–25.
    Armenakis, C., Du, E. X., Natesan, S., Persad, R. A., & Zhang, Y. (2017). Flood risk assessment in urban areas based on spatial analytics and social factors. Geosciences (Switzerland), 7(4), 1–15. https://doi.org/10.3390/geosciences7040123
    Atanga, R. A., Tankpa, V., & Acquah, I. (2023). Urbanization and flood risk analysis using geospatial techniques. PLoS ONE, 18(10 October), 1–15. https://doi.org/10.1371/journal.pone.0292290
    Atwii, F., Sandvik, K. B., Kirch, L., Paragi, B., Radtke, K., Schneider, S., & Weller, D. (2022). WorldRiskReport 2022 - Focus: Digitalization - World | ReliefWeb (L. Kirch (ed.)). https://reliefweb.int/report/world/worldriskreport-2022-focus-digitalization
    Aydin, M. C., Birincioğlu, E. S., & Sevgi Birincioğlu, E. (2022). Flood risk analysis using gis-based analytical hierarchy process: a case study of Bitlis Province. Applied Water Science, 12(6). https://doi.org/10.1007/s13201-022-01655-x
    Balica, S. F., Douben, N., & Wright, N. G. (2009). Flood vulnerability indices at varying spatial scales. Water Science and Technology, 60(10), 2571–2580. https://doi.org/10.2166/wst.2009.183
    Bank, W. (2012). Thai Flood 2011, Rapid Assessment for Resilient Recovery and Reconstruction Planning. World Bank, 377. https://www.gfdrr.org/sites/gfdrr/files/publication/Thai_Flood_2011_2.pdf
    Beringer, A. L., & Kaewsuk, J. (2018). Emerging Livelihood Vulnerabilities in an Urbanizing and Climate Uncertain Environment for the Case of a Secondary City in Thailand. SUSTAINABILITY, 10(5). https://doi.org/10.3390/su10051452
    Berry, B. J. L. (2008). Urbanization. In Urban Ecology (pp. 25–48). Springer US. https://doi.org/10.1007/978-0-387-73412-5_3
    Bonneau, J., Burns, M. J., Fletcher, T. D., Witt, R., Drysdale, R. N., & Costelloe, J. F. (2018). The impact of urbanization on subsurface flow paths - A paired-catchment isotopic study. JOURNAL OF HYDROLOGY, 561, 413–426. https://doi.org/10.1016/j.jhydrol.2018.04.022
    Broto, V. C., Allen, A., & Rapoport, E. (2012). Interdisciplinary Perspectives on Urban Metabolism. Journal of Industrial Ecology, 16(6), 851–861. https://doi.org/10.1111/j.1530-9290.2012.00556.x
    Büchele, B., Kreibich, H., Kron, A., Thieken, A., Ihringer, J., Oberle, P., Merz, B., & Nestmann, F. (2006). Flood-risk mapping: Contributions towards an enhanced assessment of extreme events and associated risks. Natural Hazards and Earth System Sciences, 6(4), 483–503. https://doi.org/10.5194/nhess-6-485-2006
    Cai, H., Lam, N. S. N., Zou, L., Qiang, Y., & Li, K. (2016). Assessing community resilience to coastal hazards in the Lower Mississippi River Basin. Water (Switzerland), 8(2). https://doi.org/10.3390/w8020046
    Cai, S., Fan, J., & Yang, W. (2021). Flooding risk assessment and analysis based on gis and the tfn-ahp method: A case study of chongqing, china. Atmosphere, 12(5). https://doi.org/10.3390/atmos12050623
    Cariolet, J. M., Vuillet, M., & Diab, Y. (2019). Mapping urban resilience to disasters – A review. Sustainable Cities and Society, 51(July), 101746. https://doi.org/10.1016/j.scs.2019.101746
    Chen, H., Xu, Z., Liu, Y., Huang, Y., & Yang, F. (2022). Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation. International Journal of Environmental Research and Public Health, 19(24). https://doi.org/10.3390/ijerph192416406
    Chen, I. H. (2021). New conceptual framework for flood risk assessment in Sheffield, UK. Geographical Research, 59(3), 465–482. https://doi.org/10.1111/1745-5871.12478
    Chen, X., Zhang, H., Chen, W., & Huang, G. (2021). Urbanization and climate change impacts on future flood risk in the Pearl River Delta under shared socioeconomic pathways. Science of The Total Environment, 762, 143144. https://doi.org/10.1016/j.scitotenv.2020.143144
    Chen, Y., Zhou, H., Zhang, H., Du, G., & Zhou, J. (2015). Urban flood risk warning under rapid urbanization. Environmental Research, 139, 3–10. https://doi.org/10.1016/j.envres.2015.02.028
    Crichton, D., & Crichton. (1999). The risk triangle. Natural Disaster Management, 102–103.
    Driessen, P. P. J., Hegger, D. L. T., Kundzewicz, Z. W., van Rijswick, H. F. M. W., Crabbé, A., Larrue, C., Matczak, P., Pettersson, M., Priest, S., Suykens, C., Raadgever, G. T., & Wiering, M. (2018). Governance strategies for improving flood resilience in the face of climate change. Water (Switzerland), 10(11), 1–16. https://doi.org/10.3390/w10111595
    Ekmekcioğlu, Ö., Koc, K., & Özger, M. (2022). Towards flood risk mapping based on multi-tiered decision making in a densely urbanized metropolitan city of Istanbul. Sustainable Cities and Society, 80(February). https://doi.org/10.1016/j.scs.2022.103759
    Elboshy, B., Kanae, S., Gamaleldin, M., Ayad, H., Osaragi, T., & Elbarki, W. (2019). A framework for pluvial flood risk assessment in Alexandria considering the coping capacity. Environment Systems and Decisions, 39(1), 77–94. https://doi.org/10.1007/s10669-018-9684-7
    Fan, J., & Huang, G. (2020). Evaluation of flood risk management in Japan through a recent case. Sustainability (Switzerland), 12(13). https://doi.org/10.3390/su12135357
    Faridatul, M. I., Wu, B., & Zhu, X. (2019). Assessing long-term urban surface water changes using multi-year satellite images: A tale of two cities, Dhaka and Hong Kong. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 243, 287–298. https://doi.org/10.1016/j.jenvman.2019.05.019
    Ferreira, T. M., & Santos, P. P. (2020). An integrated approach for assessing flood risk in historic city centres. Water (Switzerland), 12(6). https://doi.org/10.3390/w12061648
    FRIEND, R., CHOOSUK, C., HUTANUWATR, K., INMUONG, Y., KITTITORNKOOL, J., LAMBREGTS, B., PROMPHAKPING, B., ROACHANAKANAN, THONGCHAI, THIENGBURANATHUM, POON, THINPHANGA, PAKAMAS, SIRIWATTANAPHAIBOON, & SANTIPARP. (2016). Urbanising Thailand: Implications for climate vulnerability. International Institute for Environment and Development Report. https://www.jstor.org/stable/resrep29002.1
    Gain, A. K., Mojtahed, V., Biscaro, C., Balbi, S., & Giupponi, C. (2015). An integrated approach of flood risk assessment in the eastern part of Dhaka City. Natural Hazards, 79(3), 1499–1530. https://doi.org/10.1007/s11069-015-1911-7
    Galderisi, A., Limongi, G., & Salata, K. D. (2020). Strengths and weaknesses of the 100 Resilient Cities Initiative in Southern Europe: Rome and Athens’ experiences. City, Territory and Architecture, 7(1). https://doi.org/10.1186/s40410-020-00123-w
    Gayen, S., Villalta, I. V., & Haque, S. M. (2022). Flood Risk Assessment and Its Mapping in Purba Medinipur District, West Bengal, India. Water (Switzerland), 14(7). https://doi.org/10.3390/w14071049
    Ghosh, A., & Kar, S. K. (2018). Application of analytical hierarchy process (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Natural Hazards, 94(1), 349–368. https://doi.org/10.1007/s11069-018-3392-y
    González-García, A., Palomo, I., González, J. A., López, C. A., & Montes, C. (2020). Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy, 94(February), 104493. https://doi.org/10.1016/j.landusepol.2020.104493
    Hackenberg, R. A. (1980). New patterns of urbanization in southeast Asia: an assessment. Population & Development Review, 6(3), 391–419. https://doi.org/10.2307/1972408
    Hameed Basee, D., & Riadh Abdulla, Z. (2022). Transformation of urban morphology, vulnerability and resilience: Haifa Street Area, as a case study. Ain Shams Engineering Journal, 13(4), 101718. https://doi.org/10.1016/j.asej.2022.101718
    Handayani, W., Chigbu, U. E., Rudiarto, I., Surya Putri, I. H., & Putri, I. H. S. (2020). Urbanization and increasing flood risk in the Northern Coast of Central Java-Indonesia: An assessment towards better land use policy and flood management. Land, 9(10). https://doi.org/10.3390/LAND9100343
    Hargreaves, A. J., Farmani, R., Ward, S., & Butler, D. (2019). Modelling the future impacts of urban spatial planning on the viability of alternative water supply. Water Research, 162, 200–213. https://doi.org/10.1016/j.watres.2019.06.029
    Hemmati, M., Mahmoud, H. N., Ellingwood, B. R., & Crooks, A. T. (2021). Unraveling the complexity of human behavior and urbanization on community vulnerability to floods. Scientific Reports, 11(1), 20085. https://doi.org/10.1038/s41598-021-99587-0
    Henderson, V. (2002). Urbanization in developing countries. World Bank Research Observer, 17(1), 89–112. https://doi.org/10.1093/wbro/17.1.89
    Hu, S., Cheng, X., Zhou, D., & Zhang, H. (2017). GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing. Natural Hazards, 87(3), 1525–1543. https://doi.org/10.1007/s11069-017-2828-0
    Huong, H. T. L., & Pathirana, A. (2013). Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrology and Earth System Sciences, 17(1), 379–394. https://doi.org/10.5194/hess-17-379-2013
    Karnjanasin, N. (2003). Economic change of nakhon ratchasima province, A.D.1957-1997. Silpakorn University.
    Karunia, T. U., Ersa, N. S., & Ikhwali, M. F. (2021). Flood control strategy in kali sabi river basin in Tangerang. IOP Conference Series: Earth and Environmental Science, 871(1), 012043. https://doi.org/10.1088/1755-1315/871/1/012043
    Kron, W., & Company, M. R. (2005). Flood Risk = Hazard • Values • Vulnerability. 30(1), 58–68.
    Kullapat, R., Deeudomjant, C., & Hirunteeyakul, M. (2019). Nakhon Ratchasima : A Study of the Old Town through its History , Settlement , and Architectural. Najua, 16(1), 62–101.
    Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., & Sherstyukov, B. (2014). Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59(1), 1–28. https://doi.org/10.1080/02626667.2013.857411
    Kundzewicz, Z. W., Ulbrich, U., Brücher, T., Graczyk, D., Krüger, A., Leckebusch, G. C., Menzel, L., Pińskwar, I., Radziejewski, M., & Szwed, M. (2005). Summer floods in Central Europe - Climate change track? Natural Hazards, 36(1–2), 165–189. https://doi.org/10.1007/s11069-004-4547-6
    Li, X. X. X., Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao, Y., Xu, B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, T., Wang, X., Lin, P., Li, X. X. X., Chen, J., He, C., … Zhu, Z. (2020). Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters, 15(9). https://doi.org/10.1088/1748-9326/ab9be3
    Li, Z., Zhang, X., Ma, Y., Feng, C., & Hajiyev, A. (2019). A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties. International Journal of Disaster Risk Reduction, 36(January), 101140. https://doi.org/10.1016/j.ijdrr.2019.101140
    Lin, L., Wu, Z., & Liang, Q. (2019). Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Natural Hazards, 97(2), 455–475. https://doi.org/10.1007/s11069-019-03615-2
    Littidej, P., & Buasri, N. (2019). Built-Up Growth Impacts on Digital Elevation Model and Flood Risk Susceptibility Prediction in Muaeng District, Nakhon Ratchasima (Thailand). Water, 11(7), 1496. https://doi.org/10.3390/w11071496
    Liu, Z., He, C., Zhou, Y., & Wu, J. (2014). How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecology, 29(5), 763–771. https://doi.org/10.1007/s10980-014-0034-y
    Luu, C., Tran, H. X., Pham, B. T., Al-Ansari, N., Tran, T. Q., Duong, N. Q., Dao, N. H., Nguyen, L. P., Nguyen, H. D., Ta, H. T., Le, H. Van, & von Meding, J. (2020). Framework of spatial flood risk assessment for a case study in quang binh province, Vietnam. Sustainability (Switzerland), 12(7), 1–17. https://doi.org/10.3390/su12073058
    March, H. (2015). Taming, controlling and metabolizing flows: Water and the urbanization process of Barcelona and Madrid (1850–2012). European Urban and Regional Studies, 22(4), 350–367. https://doi.org/10.1177/0969776412474665
    Marks, D., & Thomalla, F. (2017). Responses to the 2011 floods in Central Thailand: Perpetuating the vulnerability of small and medium enterprises? NATURAL HAZARDS, 87(2), 1147–1165. https://doi.org/10.1007/s11069-017-2813-7
    Maskong, H. (2019). FLOOD HAZARD MAPPING USING ON-SITE SURVEYED FLOOD MAP, HECRAS V.5 AND GIS TOOL: A CASE STUDY OF NAKHON RATCHASIMA MUNICIPALITY, THAILAND. International Journal of GEOMATE, 16(54), 1–8. https://doi.org/10.21660/2019.54.81342
    McGee, T. G. (2021). 9 The Emergence of Desakota Regions in Asia: Expanding a Hypothesis. In Implosions /Explosions (pp. 121–137). De Gruyter. https://doi.org/10.1515/9783868598933-010
    Meerow, S., Newell, J. P., & Stults, M. (2015). Defining urban resilience: A review. Landscape and Urban Planning, 147(October 2017), 38–49. https://doi.org/10.1016/j.landurbplan.2015.11.011
    Mousavi, S. M., Roostaei, S., & Rostamzadeh, H. (2019). Estimation of flood land use/land cover mapping by regional modelling of flood hazard at sub-basin level case study: Marand basin. Geomatics, Natural Hazards and Risk, 10(1), 1155–1175. https://doi.org/10.1080/19475705.2018.1549112
    Nigussie, T. A., & Altunkaynak, A. (2019). Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model. Natural Hazards, 99(2), 1031–1047. https://doi.org/10.1007/s11069-019-03794-y
    Noi Phan, T., Kuch, V., & Lehnert, L. W. (2020). Land cover classification using google earth engine and random forest classifier-the role of image composition. Remote Sensing, 12(15), 1–22. https://doi.org/10.3390/RS12152411
    Ongsomwang, S., & Pukongduean, P. (2016). Urban Flood Mitigation and Prevention Using the Mike 21 Model: a Case Study of Nakhon Ratchasima Province, Thailand. Suranaree Journal of Science & Technology, 23(4), 461–479. https://www.thaiscience.info/journals/Article/SJST/10984582.pdf
    Oranratmanee, R. (2014). House of ethnic groups in Southeast Asia. Chiang Mai University Press.
    Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water (Switzerland), 6(6), 1515–1545. https://doi.org/10.3390/w6061515
    Parker, D. J. (1995). Floods in cities: increasing exposure and rising impact potential. Built Environment, 21(2–3), 114–125.
    Pathak, S., & Ahmad, M. M. (2016). Flood recovery capacities of the manufacturing SMEs from floods: A case study in Pathumthani province, Thailand. International Journal of Disaster Risk Reduction, 18, 197–205. https://doi.org/10.1016/j.ijdrr.2016.07.001
    Pathan, A. I., Agnihotri, P. G., Said, S., & Patel, D. (2022). AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Environmental Monitoring and Assessment, 194(7). https://doi.org/10.1007/s10661-022-10111-x
    Pattacini, L. (2021). Urban design and rivers: A critical review of theories devising planning and design concepts to define riverside urbanity. Sustainability (Switzerland), 13(13). https://doi.org/10.3390/su13137039
    Pattara, M. (2009). Spatial Development and Historical Meaning of Nakhon Ratchasima Old Town. Khon Kaen University.
    Pham, B. T., Luu, C., Dao, D. Van, Phong, T. Van, Nguyen, H. D., Le, H. Van, von Meding, J., & Prakash, I. (2021). Flood risk assessment using deep learning integrated with multi-criteria decision analysis. Knowledge-Based Systems, 219. https://doi.org/10.1016/j.knosys.2021.106899
    Phuttharak, T. (2014). Regional Rapid Growth in Cities and Urbanization in Thailand. Journal of Arts and Humanities, 3(1), 57–63.
    Qi, M., Huang, H., Liu, L., & Chen, X. (2022). An Integrated Approach for Urban Pluvial Flood Risk Assessment at Catchment Level. Water (Switzerland), 14(13). https://doi.org/10.3390/w14132000
    Quesada-Román, A., Ballesteros-Cánovas, J. A., Granados-Bolaños, S., Birkel, C., & Stoffel, M. (2022). Improving regional flood risk assessment using flood frequency and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones. Geomorphology, 396. https://doi.org/10.1016/j.geomorph.2021.108000
    Rana, I. A., & Routray, J. K. (2018). Integrated methodology for flood risk assessment and application in urban communities of Pakistan. Natural Hazards, 91(1), 239–266. https://doi.org/10.1007/s11069-017-3124-8
    Rosenzweig, B. R., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., Iwaniec, D., & Davidson, C. I. (2018). Pluvial flood risk and opportunities for resilience. Wiley Interdisciplinary Reviews: Water, 5(6), 1–18. https://doi.org/10.1002/wat2.1302
    Rudari, R., Disaster, N., Assessment, R., Specific, H., & Assessment, R. (2017). 4. Flood Hazard and Risk Assessment (pp. 1–16).
    Sahu, A., Bose, T., & Samal, D. R. (2021). Urban Flood Risk Assessment and Development of Urban Flood Resilient Spatial Plan for Bhubaneswar. Environment and Urbanization ASIA, 12(2), 269–291. https://doi.org/10.1177/09754253211042489
    Schmidt, C. (2017). Land Cover Classification with Satellite Imagery. NASA Applied Remote Sensing Training Program (ARSET). https://appliedsciences.nasa.gov/get-involved/training/english/arset-land-cover-classification-satellite-imagery
    Seemuangngam, A., & Lin, H.-L. (2024). The impact of urbanization on urban flood risk of Nakhon Ratchasima, Thailand. Applied Geography, 162(1), 103152. https://doi.org/10.1016/j.apgeog.2023.103152
    Seto, K. C., Parnell, S., & Elmqvist, T. (2013). A global outlook on urbanization. In T. Elmqvist, M. Fragkias, J. Goodness, B. Güneralp, P. J. Marcotullio, R. I. McDonald, S. Parnell, M. Schewenius, M. Sendstad, K. C. Seto, & C. Wilkinson (Eds.), Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment (pp. 1–12). Springer Netherlands. https://doi.org/10.1007/978-94-007-7088-1_1
    Seto, K. C., Sánchez-Rodríguez, R., & Fragkias, M. (2010). The new geography of contemporary urbanization and the environment. Annual Review of Environment and Resources, 35, 167–194. https://doi.org/10.1146/annurev-environ-100809-125336
    Sharp, J. M. (2010). The impacts of urbanization on groundwater systems and recharge. Aquamundi, 1(may), 51–56. https://doi.org/10.4409/Am-004-10-0008
    Shiau, J. T., Chen, C. N., & Tsai, C. T. (2012). Physiographic Drainage-Inundation Model Based Flooding Vulnerability Assessment. Water Resources Management, 26(5), 1307–1323. https://doi.org/10.1007/s11269-011-9960-5
    Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environmental Earth Sciences, 78(2), 1–21. https://doi.org/10.1007/s12665-018-8003-4
    Song, J., Chang, Z., Li, W., Feng, Z., Wu, J., Cao, Q., & Liu, J. (2019). Resilience-vulnerability balance to urban flooding: A case study in a densely populated coastal city in China. Cities, 95(July 2018), 102381. https://doi.org/10.1016/j.cities.2019.06.012
    Su, Q. (2020). Long ‑ term flood risk assessment of watersheds under climate change based on the game cross ‑ efficiency. Natural Hazards, 104(3), 2213–2237. https://doi.org/10.1007/s11069-020-04269-1
    Sutthitham, T. (2001). Settlement plans in Thailand : the land use and change in Khmer settlements in the northeast. Faculty of Architecture KhonKaen University.
    Tang, J., Li, Y., Cui, S., Xu, L., Hu, Y., Ding, S., & Nitivattananon, V. (2021). Analyzing the spatiotemporal dynamics of flood risk and its driving factors in a coastal watershed of southeastern China. Ecological Indicators, 121. https://doi.org/10.1016/j.ecolind.2020.107134
    Taromideh, F., Fazloula, R., Choubin, B., Emadi, A., & Berndtsson, R. (2022). Urban Flood-Risk Assessment: Integration of Decision-Making and Machine Learning. Sustainability (Switzerland), 14(8). https://doi.org/10.3390/su14084483
    Tate, E., Rahman, M. A., Emrich, C. T., & Sampson, C. C. (2021). Flood exposure and social vulnerability in the United States. Natural Hazards, 106(1), 435–457. https://doi.org/10.1007/s11069-020-04470-2
    Tayefi, V., Lane, S. N., Hardy, R. J., & Yu, D. (2007). A comparison of one‐ and two‐dimensional approaches to modelling flood inundation over complex upland floodplains. Hydrological Processes, 21(23), 3190–3202. https://doi.org/10.1002/hyp.6523
    Theodosopoulou, Z., Kourtis, I. M., Bellos, V., Apostolopoulos, K., Potsiou, C., & Tsihrintzis, V. A. (2022). A Fast Data-Driven Tool for Flood Risk Assessment in Urban Areas. Hydrology, 9(8). https://doi.org/10.3390/hydrology9080147
    Tingsanchali, T. (2012). Urban flood disaster management. Procedia Engineering, 32, 25–37. https://doi.org/10.1016/j.proeng.2012.01.1233
    UFCOP. (2017). Land Use Planning for Urban Flood Risk Management. Land Use Planning for Urban Flood Risk Management, 1–28. https://doi.org/10.1596/26654
    UNDRO. (1980). Natural disasters and vulnerability analysis : report of Expert Group Meeting, 9-12 July 1979.
    UNISDR. (2009). 2009 UNISDR Terminology on Disaster Risk Reduction. International Stratergy for Disaster Reduction (ISDR), 1–30.
    Vale, L. (2020). “Resilient cities: Clarifying concept or catch-all cliché?". The City Reader, 492–502. https://doi.org/10.4324/9780429261732-58
    Waghwala, R. K., & Agnihotri, P. G. (2019). Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. International Journal of Disaster Risk Reduction, 40(December 2018), 101155. https://doi.org/10.1016/j.ijdrr.2019.101155
    Wang, H. F., & Chiou, S. C. (2019). Study on the sustainable development of human settlement space environment in traditional villages. Sustainability (Switzerland), 11(15), 1–22. https://doi.org/10.3390/su11154186
    Wang, Z., Wu, J., Cheng, L., Liu, K., & Wei, Y. M. (2018). Regional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River Basin. Natural Hazards, 93(2), 803–822. https://doi.org/10.1007/s11069-018-3325-9
    Wisner, B. (2016). Vulnerability as Concept, Model, Metric, and Tool. In Oxford Research Encyclopedia of Natural Hazard Science (Issue May). https://doi.org/10.1093/acrefore/9780199389407.013.25
    Xie, S., Liu, L., Zhang, X., Yang, J., Chen, X., & Gao, Y. (2019). Automatic land-cover mapping using landsat time-series data based on google earth engine. Remote Sensing, 11(24). https://doi.org/10.3390/rs11243023
    Yang, Y., Zhang, H., Zhao, X., Chen, Z., Wang, A., Zhao, E., & Cao, H. (2021). Effects of Urbanization on Ecosystem Services in the Shandong Peninsula Urban Agglomeration , in China : The Case of Weifang City.
    York, A. M., Shrestha, M., Boone, C. G., Zhang, S., Jr., J. A. H., Prebyl, T. J., Swann, A., Agar, M., Antolin, M. F., Nolen, B., Wright, J. B., & Skaggs, R. (2011). Land fragmentation under rapid urbanization: A cross-site analysis of Southwestern cities. URBAN ECOSYSTEMS, 14(3), 429–455. https://doi.org/10.1007/s11252-011-0157-8
    Yu, I., Park, K., & Lee, E. H. (2021). Flood risk analysis by building use in urban planning for disaster risk reduction and climate change adaptation. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132313006
    Yu, J., Li, X., Guan, X., & Shen, H. (2022). A remote sensing assessment index for urban ecological livability and its application. GEO-SPATIAL INFORMATION SCIENCE, 00(00), 1–22. https://doi.org/10.1080/10095020.2022.2072775
    Zevenbergen, C., Gersonius, B., & Radhakrishan, M. (2020). Flood resilience. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2168), 20190212. https://doi.org/10.1098/rsta.2019.0212
    Zhang, Kaize, Shen, J., He, R., Fan, B., & Han, H. (2019). Dynamic analysis of the coupling coordination relationship between urbanization and water resource security and its obstacle factor. International Journal of Environmental Research and Public Health, 16(23). https://doi.org/10.3390/ijerph16234765
    Zhang, Ke, Shalehy, M. H., Ezaz, G. T., Chakraborty, A., Mohib, K. M., & Liu, L. (2022). An integrated flood risk assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard vulnerability analysis. Environmental Modelling and Software, 148(November 2021), 105279. https://doi.org/10.1016/j.envsoft.2021.105279
    Zhang, X., & Li, H. (2018). Urban resilience and urban sustainability: What we know and what do not know? Cities, 72, 141–148. https://doi.org/10.1016/j.cities.2017.08.009

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE