簡易檢索 / 詳目顯示

研究生: 李維宸
Li, Wei-Chen
論文名稱: 嵌入式奈米尺度石墨烯板之三維結構行為分析
Three-dimensional structural behavior of nanoscale graphene sheets embedded in an elastic medium
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 石墨烯奈米板Eringen非局部彈性力學理論三維非局部彈性力學理論微擾法多重時間尺度法漸近展開理論靜態振動挫屈Pasternak基礎
外文關鍵詞: graphene sheets, nanoplates, Eringen’s nonlocal elasticity theory, three-dimensional nonlocal elasticity, the perturbation method, multiple time scale methods, asymptotic theory, static, vibration, buckling, Pasternak’s foundation
相關次數: 點閱:115下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基於Eringen非局部彈性力學理論探討單層奈米石墨烯板之三維撓曲、自然振動、挫屈行為分析。Eringen的非局部彈性力學理論與傳統局部彈性力學理論之主要差別在於虎克彈性體描述之組成關係不同,不在於廣義應力平衡方程式。基於局部彈性理論,受到載重作用的彈性體其特定點的應力分量只取決於該點應變分量;但基於非局部彈性理論,受到載重作用的彈性體其特定點的應力分量與該連續體所有點的應變分量有關。奈米石墨烯板與其周圍環境的彈性介質之相互作用以Winkler與Pasternak型式之彈性支承基礎模擬。文中首先提出基於Eringen非局部彈性力學理論,應用微擾方法於奈米石墨烯板之三維非局部靜態行為分析,再者,基於Eringen非局部彈性力學理論與多重時間尺度法應用於彈性介質中且具完全簡支承邊界之單層均向性奈米石墨烯板的自然振動行為分析。最後,基於Eringen非局部彈性力學理論,應用漸近展開分析具完全簡支承邊界之嵌入式單層均向性石墨烯與奈米板的挫屈行為。演算過程基於Eringen的非局部彈性理論於計算微小尺度效應且引入非局部彈性力學理論的本構方程式,並進行無因次化、漸近展開與連續積分之數學運算過程,並藉由運動方程推衍各階之控制方程式。理論推衍因微擾階數不同,各階問題有其相對應之控制方程式,其首階控制方程可解得非局部古典板理論之解,再據以逐階修正得精確之非局部三維彈性力學解。本文將以三維漸近非局部彈性理論探討奈米石墨烯板嵌入於彈性介質中,其撓曲、自然振動、挫屈等三維結構力學問題之解析。

    A three-dimensional (3D) asymptotic theory is reformulated for the structural analysis of simply-supported, isotropic and orthotropic single-layered nanoplates and graphene sheets (GSs). Eringen’s nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these. The interactions between the nanoplates (or GSs) and their surrounding medium are modelled as a two-parameter Pasternak foundation. The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional (2D) nonlocal plate problems, the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory (CPT), although with different nonhomogeneous terms. Expanding the primary field variables of each order as the double Fourier series functions in the in-plane directions, we can obtain the Navier solutions of the leading-order problem, and the higher-order modifications can then be determined in a hierarchic and consistent manner. Therefore, some benchmark solutions for the static analysis of isotropic and orthotropic nanoplates and GSs subjected to sinusoidally and uniformly distributed loads are given to demonstrate the performance of the 3D nonlocal asymptotic theory. The nonlocal elasticity solutions of the natural frequency parameters of nanoplates and GSs with and without being embedded in the elastic medium and their corresponding through-thickness distributions of modal field variables are given to demonstrate the performance of the 3D asymptotic nonlocal elasticity theory. The nonlocal elasticity solutions of the critical load parameters of simply-supported, biaxially-loaded single-layered nanoplates and graphene sheets with and without being embedded in the elastic medium are given to demonstrate the performance of the 3D asymptotic nonlocal elasticity theory.

    目錄 摘要 I Extended Abstract II 誌謝 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 第二章 應用微擾方法於奈米石墨烯板之三維非局部撓曲行為分析 4 2.1 三維非局部彈性力學理論之基本方程式 4 2.2 無因次化 6 2.3 漸近展開 8 2.4 漸近積分及各階問題 9 2.4.1 ϵ^0階問題 9 2.4.2 ϵ^2k階問題 11 2.5 應用 12 2.5.1 ϵ^0階解 12 2.5.2 ϵ^2k階解 15 2.6 三維非局部撓曲問題之數值範例 17 2.6.1 均向性與正交性奈米板之撓曲問題分析 17 2.6.2 均向性石墨烯板之撓曲問題分析 19 第三章 應用多重時間尺度法於奈米石墨烯板之三維非局部自然振動行為分析 28 3.1 三維非局部彈性理論之基本方程 28 3.2 無因次化 29 3.3 漸近展開 30 3.4 漸近積分及各階問題 32 3.4.1 ϵ^0階問題 32 3.4.2 ϵ^2階問題 34 3.5 應用 36 3.5.1 ϵ^0階解 36 3.5.2 ϵ^2階解 38 3.6 三維非局部自然振動問題之數值範例 40 3.6.1 均向性奈米板之自然振動問題分析 40 3.6.2 均向性石墨烯板之自然振動問題分析 41 第四章 應用漸近非局部彈性理論於奈米石墨烯板之三維非局部挫屈行為分析 49 4.1 三維非局部彈性理論之基本方程式 49 4.2 無因次化 50 4.3 漸近展開 51 4.4 漸近積分及各階問題 53 4.4.1 ϵ^0階問題 53 4.4.2 ϵ^2階問題 55 4.5 應用 56 4.5.1 ϵ^0階解 56 4.5.2 ϵ^2階解 58 4.6 三維非局部挫屈問題之數值範例 60 4.6.1 均向性奈米板之挫屈問題分析 60 4.6.2 均向性石墨烯板之挫屈問題分析 61 第五章 結論 69 第六章 參考文獻 71 表目錄 表2.1 具完全簡支承邊界的均向性與正交性奈米板於板的上表面承受正弦及均佈載重下之中平面最大位移三維漸近解析解 20 表2.2 具完全簡支承邊界的單層均向性石墨烯板承受正弦形式外力作用下各場變量於特定點位上之三維漸近解析解 22 表3.1 三維漸近非局部彈性理論應用於單層奈米板於不同幾何尺寸下自然振動問題之收斂性分析 43 表3.2 三維漸近非局部彈性理論應用於單層奈米板於不同模態下自然振動問題之收斂性分析 44 表4.1 三維漸近非局部彈性理論應用於具完全簡支承邊界之單層均向性奈米板承受單軸及雙軸壓力作用的挫屈行為分析 63 表4.2 具完全簡支承邊界之單層均向性石墨烯板承受雙軸壓力作用下其臨界挫屈載重參數之三維漸近理論解 64 圖目錄 圖2.1 單層石墨烯板撓曲行為分析示意圖 24 圖2.2 具完全簡支承邊界的均向性奈米板於板的上表面承受均佈載重下,無因次位移沿厚度方向之變化 25 圖2.3 具完全簡支承邊界的正交性奈米板於板的上表面承受正弦分佈載重,各階問題之各場變量沿厚度方向之分佈 26 圖2.4 具完全簡支承邊界的單層均向性石墨烯板於不同微小尺度效應承受正弦形式外力作用下各場變量沿厚度方向之變化 27 圖3.1 單層石墨烯板自然振動行為分析示意圖 45 圖3.2 具完全簡支承邊界之單層均向性石墨烯板各場量變數沿厚度方向之收斂變化圖 46 圖3.3 具完全簡支承邊界之單層均向性石墨烯板於不同微小尺度參數的自然振動頻率與厚長比之變化圖 47 圖3.4 具完全簡支承邊界之單層均向性石墨烯板於不同微小尺度參數的自然振動頻率與寬長比之變化圖 47 圖3.5 具完全簡支承邊界之單層均向性石墨烯板於不同微小尺度參數下的自然振動頻率與Winkler彈性支承勁度之變化圖 48 圖3.6 具完全簡支承邊界之單層均向性石墨烯板於不同微小尺度參數下的自然振動頻率與剪切模數之變化圖 48 圖4.1 單層石墨烯板挫屈行為分析示意圖 66 圖4.2 具完全簡支承邊界且不介於彈性環境介質下的單層均向性石墨烯板承受軸向壓力作用下,其臨界挫屈載重參數三維漸近理論解 67 圖4.3 具完全簡支承邊界之單層均向性石墨烯板於不同微小尺度參數下的臨界挫屈載重與Winkler彈性支承勁度之變化圖 68 圖4.4 具完全簡支承邊界之單層均向性石墨烯板於不同微小尺度參數下的臨界挫屈載重與剪切模數之變化圖 68

    Alibeigloo, A. (2011), Free vibration analysis of nano-plate using three-dimensional theory of elasticity, Acta Mechanica, 222, 149-159.
    Alibeigloo, A. (2012), Three-dimensional free vibration analysis of multilayered graphene sheets embedded in elastic matrix, Journal of Vibration and Control, 19, 2357-2371.
    Ansari, R., Arash, B., Rouhi, H. (2011), Nanoscale vibration analysis of embedded multilayered graphene sheets under various boundary conditions, Computational Materials Science, 50, 3091-100.
    Ansari, R., Arash, B., Rouhi, H. (2011), Vibration characteristics of embedded multilayered graphene sheets with different boundary conditions via nonlocal elasticity, Composite Structures, 93, 2419-29.
    Arani, A.G., Jalaei, M.H. (2016), Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach, Journal of Engineering Mathematics, 98, 129–144.
    Ansari, R., Norouzzadeh, A. (2016), Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis, Physica E, 84, 84-97.
    Aghababaei, R., Reddy, J.N. (2009), Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, 326, 277-289.
    Ansari, R., Rouhi, H. (2012), Explicit analytical expressions for the critical buckling stresses in a monolayer graphene sheet based on nonlocal elasticity, Solid State Communications, 152, 56-59.
    Ansari, R., Sahmani, B., Arash, B. (2010), Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A, 375, 53-62.
    Ansari, R., Shahabodini, A., Alipour, A., Rouhi, H. (2012), Stability of a single-layer graphene sheet with various edge conditions: a non-local plate model including interatomic potentials, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 226, 51-60.
    Ansari, R., Shojaei, M.F., Shahabodini, A., Bazdid-Vahdati, M. (2015), Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach, Composite Structures, 131, 753-764.
    Ansari, R., Shahabodini, A., Shojaei, M.F. (2016), Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations, Physica E, 76, 70-81.
    Arash, B., Wang, Q. (2012), A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Computational Materials Science, 51, 303-313.
    Alibeigloo, A., Pasha Zanoosi, A.A. (2013), Static analysis of rectangular nano-plate using three-dimensional theory of elasticity, Apply Mathematical Modelling, 37, 7016-7026.
    Alzahrani, E.O., Zenkour, A.M., Sobhy, M. (2013), Small scale effect on hygro-thermo-mechanical bending of nanoplates embedded in an elastic medium, Composite Structures, 105, 163-172.
    Brischetto, S. (2014), A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes, Composites Part B: Engineering, 61, 222-228.
    Brischetto, S., Carrera, E. (2012a), Classical and refined shell models for the analysis of nano-reinforced structures, International Journal of Mechanical Sciences, 55, 104-117.
    Brischetto, S., Carrera, E. (2012b), Analysis of nano-reinforced layered plates via classical and refined two-dimensional theories, Multidiscipline Modeling in Materials and Structures, 8, 4-31.
    Brischetto, S., Tornabene, F., Fantuzzi, N., Bacciocchi, M. (2015), Refined 2D and exact 3D shell models for the free vibration analysis of single- and double-walled carbon nanotubes, Technologies, 3, 259-284.
    Bodily, B.H., Sun, C.T. (2003), Structural and equivalent continuum properties of single-walled carbon nanotubes, International Journal of Materials and Product Technology, 18, 381-97.
    Chong, K.P. (2008), Nano science and engineering in solid mechanics, Acta Mech Solida Sinica, 21, 95-103.
    Chakraverty, S., Behera, L. (2014), Free vibration of rectangular nanoplates using Rayleigh-Ritz method, Physica E, 56, 357-63.
    Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K. (2006), Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, 44, 1624-1652.
    Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S. (2010), Synthesis of graphene and its applications: A review, Critical Reviews in Solid State and Materials Sciences, 35, 52-71.
    Duan, W.H., Wang, C.M. (2007), Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory, Nanotechnology, 18, 385704.
    Eringen, A.C. (1972), Nonlocal polar elastic continua, International Journal of Engineering Science, 10, 1-16.
    Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York.
    Eringen, A.C., Edelen, D.G.B. (1972), On nonlocal elasticity, International Journal of Engineering Science, 10, 233-248.
    Esawi, A.M.K., Farag, M.M. (2007), Carbon nanotube reinforced composites: Potential and current challenges, Materials & Design, 28, 2394-2401.
    Eltaher, M.A, Khater, M.E, Emam, S.A. (2016), A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams, Applied Mathematical Modelling, 40, 4109-28.
    Guo, J., Chen, J., Pan, E. (2016), Size-dependent behavior of functionally graded anisotropic composite plates, International Journal of Engineering Science, 106, 110-124.
    Ghavanloo, E., Fazelzadeh, S.A. (2013), Nonlocal elasticity theory for radial vibration of nanoscale spherical shells, European Journal of Mechanics - A/Solids, 41, 37-42.
    Hosseini-Hashemi, S., Kermajani, M., Nazemnezhad, R. (2015), An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory, European Journal of Mechanics - A/Solids, 51, 29-43.
    Hu, Y.G., Liew, K.M., Wang, Q. (2012), Modeling of vibrations of carbon nanotubes, Procedia Engineering, 31, 343-47.
    Hosseini-Hashemi, S., Zare, M., Nazemnezhad, R. (2013), An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity, Composite Structures, 100, 290-9.
    Iijima, S. (1991), Helical microtubules of graphitic carbon, Nature, 354, 56-58.
    Kitipornchai, S., He, X.Q., Liew, K.M. (2005), Continuum model for the vibration of multilayered graphene sheets, Physical Review B, 72, 075443.
    Li, C., Chou, T.W. (2003), A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures, 40, 2487-99.
    Liew, K.M., He, X.Q., Kitipornchai S. (2006), Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix, Acta Materialia, 54, 4229-4236.
    Lei, Z.X., Liew, K.M., Yu, J.L. (2013), Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method, Computer Methods in Applied Mechanics and Engineering, 256, 189-99.
    Lei, Z.X., Liew, K.M., Yu, J.L. (2013), Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment, Composite Structures, 106, 128-38.
    Liew, K.M., Lei, Z.X., Zhang, L.W. (2015), Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review, Composite Structures, 120, 90-97.
    Li, Y.S., Pan, E. (2015), Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, International Journal of Engineering Science, 97, 40-59.
    Li, Y.S., Pan, E. (2016), Bending of a sinusoidal piezoelectric nanoplate with surface effect, Composite Structures, 136, 45-55.
    Li, C., Thostenson, E.T., Chou, T.W. (2008), Sensors and actuators based on carbon nanotubes and their composites: a review, Composites Science and Technology, 68, 1227-1249.
    Moon, J., Gaskill, D. (2011), Graphene: Its Fundamentals to Future Applications, IEEE Transactions on Microwave Theory and Techniques, 59, 2702-2708.
    Murmu, T., Pradhan, S.C. (2009), Buckling of biaxially compressed orthotropic plates at small scales, Mechanics Research Communications, 36, 933-938.
    Malekzadeh, P., Shojaee, M. (2013), Free vibration of nanoplates based on a nonlocal two-variable refined plate theory, Composite Structures, 95, 443-52.
    Mori, T., Tanaka, K. (1973), Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, 571-574.
    Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, New York.
    Narendar, S. (2011), Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects, Composite Structures, 93, 3093-3103.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004), Electric field effect in atomically thin carbon films, Science, 306, 666-669.
    Narendar, S., Gopalakrishnan, S. (2012), Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory, Acta Mechanica, 223, 395-413.
    Pradhan, S.C., Kumar, A. (2010), Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method, Computational Materials Science, 50, 239-45.
    Pradhan, S.C., Kumar, A. (2011), Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method, Composite Structures, 93, 774-779.
    Pradhan, S.C., Murmu, T. (2009), Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics, Computational Materials Science, 47, 268-274.
    Pradhan, S.C., Murmu, T. (2010), Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory, Physica E, 42, 1293-1301.
    Pradhan, S.C., Phadikar, J.K. (2009), Nonlocal elasticity theory for vibration of nanoplates, Journal of Sound and Vibration, 325, 206-223.
    Pradhan, S.C., Phadikar, J.K. (2011), Nonlocal theory for buckling of nanoplates, International Journal of Structural Stability and Dynamics, 11, 411-429.
    Reddy, J.N. (1984), A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, 51, 745-52.
    Reddy, J.N. (1984), A refined nonlinear theory of plates with transverse shear deformation, International Journal of Solids and Structures, 20, 881-896.
    Reddy, J.N. (2002), Energy and Variational Methods in Applied Mechanics, John Wiley & Sons, New York.
    Reddy, J.N. (2010), Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science, 48, 1507-1518.
    Ramaratnam, A., Jalili, N. (2006), Reinforcement of piezoelectric polymers with carbon nanotubes: pathway to next-generation sensors, Journal of Intelligent Material Systems and Structures, 17, 199-208.
    Reddy, J.N., Phan, N.D. (1985), Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory, Journal of Sound and Vibration, 98, 157-170.
    Shen, H.S. (2011), Nonlocal plate model for nonlinear analysis of thin films on elastic foundations in thermal environments, Composite Structures, 93, 1143-52.
    Sarrami-Foroushani, S., Azhari, M. (2014), Nonlocal vibration and buckling analysis of single and multi-layered graphene sheets using finite strip method including van der Waals effects, Physica E, 57, 83-95.
    Sayyad, A.S., Ghugal, Y.M. (2012), Buckling analysis of thick isotropic plates by using exponential shear deformation theory, Applied and Computational Mechanics, 6, 185-196.
    Srinivas, S., Joga Rao, C.V., Rao, A.K. (1970), An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates, Journal of Sound and Vibration, 12, 187-99.
    Shen, L., Shen, H.S., Zhang, C.L. (2010), Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Computational Materials Science, 48, 680-685.
    Sun, C.T., Zhang, H.T. (2003), Size-dependent elastic moduli of plate like nanomaterials, Journal of Applied Physics, 93, 1212-18.
    Thai, H.T. (2012), A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, 52, 56-64.
    Thai, H.T., Kim, S.E. (2013), A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates, Composite Structures, 99, 172-180.
    Thai, H.T., Vo, T.P. (2012), A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, 54, 58-66.
    Thai, H.T., Vo, T.P., Nguyen, T.K., Lee, J. (2014), A nonlocal sinusoidal plate model for micro/nanoscale plates, Proceedings of the institution of mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 2652-2660.
    Wang, Q. (2004), Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes, International Journal of Solids and Structures, 41, 5451-5461.
    Wang, Q. (2005), Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied Physics, 98, 124301.
    Wu, C.P., Chiu, S.J. (2002), Thermally induced dynamic instability of laminated composite conical shells, International Journal of Solids and Structures, 39, 3001-3021.
    Wu, C.P., Chi, Y.W. (2005), Three-dimensional nonlinear analysis of laminated cylindrical shells under cylindrical bending, European Journal of Mechanics - A/Solids, 24, 837-56.
    Wu, C.P., Chiu, K.H., Wang, Y.M. (2008), A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, Computers, Materials and Continua, 8, 93-132.
    Wen, P.H., Huang, X.J., Aliabadi, M.H. (2013), Two-dimensional nonlocal elasticity analysis by local integral equation method, Computer Modeling in Engineering and Sciences, 96, 199-225.
    Wu, C.P., Jiang, R.Y. (2015), Three-dimensional free vibration analysis of sandwich FGM cylinders with combinations of simply-supported and clamped edges and using the multiple scales and meshless methods, Computers, Materials and Continua, 46, 17-56.
    Wu, C.P., Jiang, R.Y. (2015), An asymptotic meshless method for sandwich functionally graded circular hollow cylinders with various boundary conditions, Journal of Sandwich Structures & Materials, 17, 469-510.
    Wu, C.P., Lo, J.Y. (2000), Three-dimensional elasticity solutions of laminated annular spherical shells, Journal of Engineering Mechanics, 126, 882-5.
    Wang, Q., Liew, K.M. (2008), Molecular mechanics modeling for properties of carbon nanotubes, Journal of Applied Physics, 103, 046103.
    Wang, Y.Z., Li, F.M. (2012), Static bending behaviors of nanoplate embedded in elastic matrix with small scale effects, Mechanics Research Communications, 41, 44-48.
    Wu, C.P., Syu, Y.S. (2007), Exact solutions of functionally graded piezoelectric shells under cylindrical bending, International Journal of Solids and Structures, 44, 6450-6472.
    Wu, C.P., Tsai, Y.H. (2004), Asymptotic DQ solutions of functionally graded annular spherical shells, European Journal of Mechanics - A/Solids, 23, 283-299.
    Wu, C.P., Tsai, Y.H. (2009), Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation, Journal of Engineering Mathematics, 63, 95-119.
    Wu, C.P., Tsai, Y.H. (2010), Dynamic responses of functionally graded magneto-electro-elastic shells with closed-circuit surface conditions using the method of multiple scales, European Journal of Mechanics - A/Solids, 29, 166-81.
    Wu, C.P., Tarn, J.Q., Chi, S.M. (1996a), Three-dimensional analysis of doubly curved laminated shells, Journal of Engineering Mechanics, 122, 391-401.
    Wu, C.P., Tarn, J.Q., Chi, S.M. (1996b), An asymptotic theory for dynamic response of doubly curved laminated shells, International Journal of Solids and Structures, 33, 3813-3841.
    Wu, C.P., Tarn, J.Q., Chen, P.Y. (1997), Refined asymptotic theory of doubly curved laminated shells, Journal of Engineering Mechanics, 123, 1238-1246.
    Wu, C.P., Tarn, J.Q., Tang, S.C. (1998), A refined asymptotic theory for dynamic analysis of doubly curved laminated shells, International Journal of Solids and Structures, 35, 1953-79.
    Wang, K.F., Wang, B.L. (2013), A finite element model for the bending and vibration of nanoscale plates with surface effect, Finite Elements in Analysis and Design, 74, 22-9.
    Wu, C.P., Wang, Y.M., Hung, Y.C. (2001), Asymptotic finite strip analysis of doubly curved shells, Computational Mechanics, 27, 107-18.
    Wang, K.F., Wang, B.L., Kitamura, T. (2016), A review on the application of modified continuum models in modeling and simulation of nanostructures, Acta Mechanica Sinica, 32, 83-100.
    Wang, Q., Wang, C.M. (2007), The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology, 18, 075702.
    Zhang, L.W., Lei, Z.X., Liew, K.M. (2015), Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method, Applied Mathematics and Computation, 256, 488-504.
    Zhang, L.W., Lei, Z.X., Liew, K.M. (2015), Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method, Composite Structures, 120, 189-99.
    Zhu, R., Pan, E., Roy, A.K. (2007), Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites, Materials Science and Engineering: A, 447, 51-7.
    Zenkour, A.M., Sobhy, M. (2013), Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium, Physica E: Low-dimensional Systems and Nanostructures, 53, 251-259.

    下載圖示 校內:2020-05-16公開
    校外:2020-05-16公開
    QR CODE