簡易檢索 / 詳目顯示

研究生: 黃瑋麒
Huang, Wei-Chi
論文名稱: 基於Pesudospectral演算法的Wigner-d函數計算之研究
The Computation of Wigner-d Function for the Rotation of Spherical Harmonics based on Pseudospectral Algorithm
指導教授: 尤瑞哲
You, Rey-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 47
中文關鍵詞: 球諧函數Wigner-d函數Pseudospectral演算法
外文關鍵詞: Spherical harmonics, Wigner-D function, Pseudospectral algorithm.
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 描述地球引力場中的球諧函數在許多理論及實際應用中相當重要,尤其是在全球大地測量領域,如引力位、大地水準面的決定,且通常定義在以地球為中心的地心地固坐標系統(Earth-centered Earth-fixed system, ECEF)上。近年來,衛星觀測數據如重力梯度資料等,提供了高精度且完整的資料供解算地球重力場,然而這些資料大多是在軌道坐標系統(Orbital system)上所觀測而得,為了使用這些衛星觀測資料來確定球諧函數係數,必須將這些資料由衛星軌道系統透過旋轉方法轉至地心地固坐標系統,因此,球諧函數的旋轉是一項重要的研究課題。
    除此之外,Wigner-d函數被廣泛應用在處理球諧函數的旋轉問題中,而本研究即基於Wigner-d函數的應用下,透過Pseudospectral演算法將球諧函數旋轉至其他坐標系中,而由於這些旋轉方法皆須計算Wigner-d函數,故Wigner-d函數的解算亦影響了旋轉成果。在本研究中,透過Pseudospectral演算法實驗模擬旋轉成果。藉由本研究的成果顯示,球諧函數的旋轉藉由Pseudospectral演算法有快速且穩定的計算流程,並可得到精確的成果。
    然而,Wigner-d函數的各項解算方法中,其中之一為遞迴函式,計算d函數時,包含了三個方向的遞迴關係,其解算精度亦受限於球諧展開階數,故本研究實驗成果中亦透過Risbo提出的三方向遞迴函式配合快速傅立葉(FFT)解算Wigner-d函數,並將此成果視為參考真值,再透過Gimbutas精度模型,來分析球諧展開階數對Pseudocpectral演算法之計算成果精度的影響。本實驗成果顯示了在相同旋轉角時,其相對精度在低階展開階數時的表現佳,另一方面,展開階數為固定時,計算成果在低旋轉角時的精度表現亦較佳,且符合文獻預期成果。

    Spherical harmonics of the Earth’s gravitational field are of great importance in many theoretical and practical applications, particularly in Global Geodesy. Space measurements from satellite missions like gradiometric measurements from GOCE mission provide highly precise data for the determination of the Earth’s gravitational field. These highly precise data are measured in the satellite orbit. In order to use the data to determine the spherical harmonic coefficients, a rotation from the satellite orbital coordinate system to the Earth-centered Earth-fixed coordinate system is therefore necessary. Consequebtly, the spherical harmonic expression involves the rotation parameters which are expressed by the so-called Wigner-D function.

    Furthermore, the Wigner-d function is widely used in the computation of the spherical harmonics, if the coordinate system is rotated. In this research, we simulate the rotations through Pseudospectral algorithm. The results of our simulation show that the rotation of spherical harmonics can be carried out fast and stably via the Pseudospectral algorithm.

    摘要 I The Computation of Wigner-d Function for the Rotation of Spherical Harmonics based on the Pseudospectral Algorithm II 誌謝 X 表目錄 XIII 圖目錄 XIV 第一章、前言 1 1.1、歷史背景 1 1.2、研究動機及目的 2 1.3、研究方法 4 1.4、論文架構 5 第二章、Legendre多項式與球諧函數 7 2.1、Legendre多項式 7 2.1.1、Legendre多項式 7 2.1.2、締合Legendre多項式 10 2.2、球諧函數 12 2.2.1、基本定義 12 2.2.2、球諧函數之正交性質 14 第三章、球諧函數及其旋轉 16 3.1、地球重力場與球諧展開式 16 3.1.1、地球重力場 16 3.1.2、坐標系統 17 3.2、Wigner-D函數 19 3.2.1、Wigner-D函數基本介紹 19 3.2.2、Wigner-d函數之FFT解算 21 3.2.3、Wigner-d矩陣之遞迴函式 23 3.3 Pseudospectral演算法 26 3.3.1、介紹 26 3.3.2、計算流程 27 第四章、實驗成果分析 31 4.1、實驗方法 31 4.1.1、實驗模型設計 31 4.1.2、計算流程 33 4.2、模擬成果分析 35 4.2.1、精度分析 35 4.2.2、實驗例-以GOCE衛星軌道為例 41 第五章、結論與建議 43 5.1、結論 43 5.2、建議及未來展望 44 參考文獻 45

    尤瑞哲,(2011),「測量及空間資訊坐標系統與轉換」, 國立成功大學測量與空間資訊學系,台南市。

    陳俊勇,李建成,寧津生,晁定波,(2003),「地球重力場逼近理論與中国2000似大地水準面的確定」,武漢大學,武漢市。

    寧津生,(2002),衛星重力探測技術與地球重力場研究,Journal of Geodesy and Geodynamics. Vol.22, No.1, 1671-5942(2002)-0001-05, pp.1-5.

    鄭偉,許厚澤,鍾敏,員美娟,彭碧波,周旭華,(2010),地球重力場模型研究進展和現狀,Journal of Geodesy and Geodynamics.
    Vol.30, No.4, 1671-5942(2010)04-0083-09, pp.84-90.

    游輝欽,(2000),「球諧分析衛星加速度求定地球重力場」,國立交通大學土木工程學系研究所碩士論文,新竹市。
    Aubert, G. (2013), An Alternative to Wigner d-matrices for rotating real spherical harmonics, AIP Advance. Vol.3, Issue 6, 062121.

    Brink, D. M. and Satchler, G. R. (1975), “Angular Momentum,” Published literature, Clarendon University press, U.K.

    Bowman, F. (1958), “Introduction to Bessel Functions,” Published literature, Dover Publications.

    Biedenharn, L. C. and Van Dam, H.(1965), “Quantum theory of angular momentum,” A collection of reprints and original papers, Academic Press, New York.

    Biedenharn, L.C. and Louck, J.D. (1981), “Angular Momentum in Quantum Physics : Theory and Application,” Published literature, Addison-Wesley Publishing Company, Chicago, U.S..

    Condon, E. U. and Shortley, G. H. (1935), “The theory of atomic spectra” Published literature, Cambridge University Press, Cambridge, U.K.

    Condon, E. U. and Odabasi, H. (1980), “Atomatic Structure,” Published literature, Cambridge University Press, Cambridge, U.K.

    Edmonds, A.R. (1957), “Angular Momentum in Quantum Mechanics,” Published literature, Princeton University press, U.S.

    Gumerov, N. and Duraiswami, R. (2003), “Recursions for the computation of multipole translation and rotation coefficients for the 3-D Helmholtz Equation”, The SIAM Journal on Scientific Computing, Vol. 25, pp. 1344-1381.

    Ivanic, J. and Ruedenberg, K. (1996), Rotation matrices for real spherical harmonics, direct determination by recursion, The Journal of Physical Chemistry, A. Vol.100, pp. 6342–6347.

    Julio, A. K and Wriggers, W. (2002), Fast rotational matching, Acta Crystallographica Section D, DOI: 10.1107/S0907444902009794.

    Keller, W. and You, R.J. (2014), Adaptation of the torus and Rosborough approach to radial base functions, Studia Geophysica et Geodaetica, Vol.58, Issue 2, pp. 249–268.

    Kautz, J., Sloan, P.P. and Snyder, J. (2002), Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics, Thirteenth Eurographics Workshop on Rendering, pp. 291-296.

    Pinchon, D. and Hoggan, P.E. (2007), Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes, Journal of Physics A: Mathematical and Theoretical. Theor. 40-1597-1610.

    Peter, J.K. and Daniel, N.R. (2008), FFTs on the rotation group, Journal of Fourier Analysis and Applications, DOI:10.1007/s00041-008-9013-5, pp. 145–179.

    Risbo, T. (1996), Fourier transform summation of Legendre series and D-functions, Journal of Geodesy, Vol.70, pp. 383-396.

    Steinborn, E. O. and Ruedenberg, K. (1973), Rotation and translation of regular and irregular solid spherical harmonics, Advances in Quantum Chemistry. Vol .7, pp.1–81.

    Slater, J. C. (1929), The theory of complex spectra, Physical Review letters, Vol.34, pp. 1293–1322.

    Serneels, R., Snykers, M., Delavignette, P., Gevers, R. and Amelinckx, S. (2006), “Friedel's Law in Electron Diffraction as Applied to the Study of Domain Structures in Non-Centrosymmetrical Crystals,” Physica status solidi (b), Vol.58, Issue 1, pp. 277–292.

    Trapani, S. and Navaza, J.(2005), “Calculation of spherical harmonics and Wigner d functions by FFT. Applications to fast rotational matching in molecular replacement and implementation into AMORE,” Acta Crystallographica, Section A, Foundations of Crystallography.

    Weikko, A.H. and Moritz, H. (1987), “Physical Geodesy” Published book, copyright in the Library of Congress catalogue , number:66-24950, U.S.

    Wigner, E. P. (1959), “Group theory and its application to the quantum mechanics of atomic spectra,” Academic Press, New York.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE