| 研究生: |
邱靖聞 Chiu, Ching-Wen |
|---|---|
| 論文名稱: |
氧化鋅/生質碳複合觸媒應用於二氧化碳環加成反應 Zinc oxide/biochar catalysts for cycloaddition conversion of carbon dioxide to propylene oxide |
| 指導教授: |
劉守恒
Liu, Shou-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 二氧化碳 、氧化鋅 、鋅摻雜 、生質碳 、環加成反應 |
| 外文關鍵詞: | ZnO, Zinc doping, biochar, carbon dioxide, cycloaddition reaction |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳是地球上最主要的溫室氣體,主要源自於人為排放和化石燃料燃燒。目前大氣中CO2的濃度逐年增加,並對環境造成負面影響,如全球變暖化和海平面上升等問題。在各種二氧化碳轉化技術中,透過環加成反應將二氧化碳轉換成高經濟價值的環狀碳酸酯受到了廣泛的關注,被認為是具有潛力的方法。而目前已有許多勻相、非勻相觸媒被製備應用於環加成反應,但是這一系列的觸媒仍面臨反應時間長、反應條件嚴苛(高溫、高壓)和添加有毒助溶劑等問題。因此,開發出能在溫和的反應條件和無毒助溶劑的添加下,提供高催化活性使CO2環加成反應順利進行的穩定觸媒是很重要的。本研究先以纖維素合成氧化鋅/生質碳複合觸媒C-X (X= 0.5, 1, 2, 3, 4),透過SEM、XPS、XRD、FTIR、EA、TGA、TEM及比表面積分析儀等來來鑑定其物化性質,並且應用於二氧化碳環加成反應形成碳酸丙烯酯,再以GC-BID分析及計算其轉換率和選擇性,並計算出產率,其中C-3擁有最佳的催化性能,歸因於其較高的鋅含量和比表面積的協同效應,以及表面富有的羧酸基可以活化環氧化物上的C-O鍵幫助開環。考量催化效果和成本因素,選擇C-1為製備氧化鋅/生質碳複合觸媒的比例,再以球磨方法修飾氮於材料結構中,增加材料對CO2的吸附及活化能力,得到C1-NX-t (X= 1, 3; t= 6, 12, 24),依相同流程鑑定其物化特性和催化能力,選擇最適合之摻氮方法,其中C1-N1-12具有最高氮含量,利於活化CO2,具優良的CO2環加成效能。最後以實際農業廢棄物-甘蔗渣(SCB)依此比例制備複合觸媒。結果顯示,於反應條件為環氧丙烷量43 mmole,觸媒量0.1600 g,四甲基碘化銨量0.86 mmole,溫度80°C,CO2壓力(3 kg/cm2)及反應時間3小時下,SCB1-N的環氧丙烷轉換率及碳酸丙烯酯的產率皆為88%,且在循環試驗中展現良好的再利用性和穩定性。
Carbon dioxide is one kind of greenhouse gas and mainly originated from anthropogenic emissions and fossil fuel combustion. Therefore, CO2 concentrations in the atmosphere have been increased year by year, which led to negative impacts on the environment, such as global warming and rising sea level, etc. Among various transformations of CO2, the cycloaddition of CO2 with epoxide has received great attention in the past decades due to the widespread utility of cyclic carbonates. The cycloaddition reaction has been investigated by using a series of catalysts, including homogeneous and heterogeneous catalysts, however, the reported catalysts faced some problems, such as long reaction time, high temperature, high pressure, toxic co-solvent. Therefore, it is important to develop a stable catalyst that can afford high activity in the cycloaddition of CO2 without toxic co-solvents under mild reaction conditions.
In this study, the zinc oxide/biochar C-X (X= 0.5, 1, 2, 3, 4) were prepared by a simple pyrolysis method. The morphologies and physicochemical properties of the catalysts were analyzed by XRD, SEM, TEM, EA, XPS, FTIR, TGA, N2 adsorption-desorption measurement and CO2 adsorption measurement. The obtained catalysts were applied in the cycloaddition reaction to form propylene carbonate, and then analyzed by GC-BID and then calculated the conversion and selectivity. Among them, the C-3 has the best catalytic performance, which is attributed to the synergic effect of surface area and zinc oxide contents, and the abundant carboxylic acid groups on the surface which can activate the C-O bond of the epoxide to facilitate the ring opening. Taking the cost factor into account, we use C-1 to prepare nitrogen doped catalysts (i.e., C1-NX-t, X= 1, 3; t= 6, 12, 24) via a facile ball-milling method. As a result, the C1-N1-12 is prepared with relatively low amounts of zinc and nitrogen with moderate catalytic activity and the highest contents of nitrogen which is beneficial to CO2 activation. Thus, the method for preparation of C1-N1-12 is selected as the suitable route to further prepare nitrogen-doped ZnO/biochar via recycling agricultural waste (i.e., sugarcane bagasse (SCB)). The results show that under the reaction conditions of propylene oxide (43 mmole), catalyst (0.1600 g), TBAI (0.86 mmole), temperature of 80 °C, CO2 pressure (3 kg/cm2) and reaction time of 3 h, the conversion rate of propylene oxide and the yield of propylene carbonate of SCB1-N reach ca. 88%, and show good recyclability and stability in the cycle tests.
Adeleye, A. I., Kellici, S., Heil, T., Morgan, D., Vickers, M., & Saha, B. (2015). Greener synthesis of propylene carbonate using graphene-inorganic nanocomposite catalysts. Catalysis Today, 256, 347-357.
Aguila, B., Sun, Q., Wang, X., O'Rourke, E., Al-Enizi, A. M., Nafady, A., & Ma, S. (2018). Lower activation energy for catalytic reactions through host–guest cooperation within metal–organic frameworks. Angewandte Chemie International Edition, 57(32), 10107-10111.
Andrade, M. F., & Colodette, J. L. (2014). Dissolving pulp production from sugar cane bagasse. Industrial Crops and Products, 52, 58-64.
Appaturi, J. N., Ramalingam, R. J., Gnanamani, M. K., Periyasami, G., Arunachalam, P., Adnan, R., Adam, F., Wasmiah, M. D., & Al-Lohedan, H. A. (2020). Review on carbon dioxide utilization for cycloaddition of epoxides by ionic liquid-modified hybrid catalysts: Effect of influential parameters and mechanisms insight. Catalysts, 11(1).
Aresta, M., & Dibenedetto, A. (2004). The contribution of the utilization option to reducing the CO2 atmospheric loading: Research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catalysis Today, 98(4), 455-462.
Aresta, M., Dibenedetto, A., & Angelini, A. (2014). Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2. Chemical Reviews, 114(3), 1709-1742.
Atsbha, T. A., Yoon, T., Seongho, P., & Lee, C.-J. (2021). A review on the catalytic conversion of CO2 using h2 for synthesis of co, methanol, and hydrocarbons. Journal of CO2 Utilization, 44, 101413.
Campisciano, V., Calabrese, C., Giacalone, F., Aprile, C., Lo Meo, P., & Gruttadauria, M. (2020). Reconsidering TOF calculation in the transformation of epoxides and CO2 into cyclic carbonates. Journal of CO2 Utilization, 38, 132-140.
Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15.
Chand, H., Choudhary, P., Kumar, A., Kumar, A., & Krishnan, V. (2021). Atmospheric pressure conversion of carbon dioxide to cyclic carbonates using a metal-free lewis acid-base bifunctional heterogeneous catalyst. Journal of CO2 Utilization, 51, 101646.
Chang, G. G., Ma, X. C., Zhang, Y. X., Wang, L. Y., Tian, G., Liu, J. W., Wu, J., Hu, Z. Y., Yang, X. Y., & Chen, B. L. (2019). Construction of hierarchical metal-organic frameworks by competitive coordination strategy for highly efficient CO2 conversion. Advanced Materials, 31(52).
Chang, H., Li, Q., Cui, X., Wang, H., Bu, Z., Qiao, C., & Lin, T. (2018). Conversion of carbon dioxide into cyclic carbonates using wool powder-KI as catalyst. Journal of CO2 Utilization, 24, 174-179.
Chen, J., Yang, J., Hu, G., Hu, X., Li, Z., Shen, S., Radosz, M., & Fan, M. (2016). Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustainable Chemistry & Engineering, 4(3), 1439-1445.
Chen, W., Zhong, L.-x., Peng, X.-w., Sun, R.-c., & Lu, F.-c. (2015). Chemical fixation of carbon dioxide using a green and efficient catalytic system based on sugarcane bagasse—an agricultural waste. ACS Sustainable Chemistry & Engineering, 3(1), 147-152.
Dai, W., Zou, M., Long, J., Li, B., Zhang, S., Yang, L., Wang, D., Mao, P., Luo, S., & Luo, X. (2021). Nanoporous N-doped carbon/ZnO hybrid derived from zinc aspartate: An acid-base bifunctional catalyst for efficient fixation of carbon dioxide into cyclic carbonates. Applied Surface Science, 540, 148311.
Dan, M., Vulcu, A., Porav, S. A., Leostean, C., Borodi, G., Cadar, O., & Berghian-Grosan, C. (2021). Eco-friendly nitrogen-doped graphene preparation and design for the oxygen reduction reaction. Molecules, 26(13), 3858.
Das, S., Dickinson, C., Laffir, F., Brougham, D., & Marsili, E. (2012). Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with rhizopus oryzae protein extract. Green Chem., 14, 1322-1334.
Ding, M., Liu, X., & Yao, J. (2021). Zinc oxide rod/peanut shell-derived porous carbon composites for cooperative CO2 chemical fixation. New Journal of Chemistry, 45(9), 4147-4151.
Ding, Z., Xu, W., Zhang, X., Liu, Z., Shen, J., Liang, J., Jiang, M., & Ren, X. (2019). Controllable acid/base propriety of sulfate modified mixed metal oxide derived from hydrotalcite for synthesis of propylene carbonate. Catalysts, 9(5), 470.
Divya, P., & Ramaprabhu, S. (2014). Platinum–graphene hybrid nanostructure as anode and cathode electrocatalysts in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2(14), 4912-4918.
Duan, C., Ding, M., Feng, Y., Cao, M., & Yao, J. (2022). ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition. Separation and Purification Technology, 285, 120359.
Duan, C. X., Liang, K., Lin, J. H., Li, J. J., Li, L. B., Kang, L., Yu, Y., & Xi, H. X. (2022). Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. Science China-Materials, 65(2), 298-320.
Ferreira, A., Ferreira, C., Teixeira, J. A., & Rocha, F. (2010). Temperature and solid properties effects on gas–liquid mass transfer. Chemical Engineering Journal, 162(2), 743-752.
Gao, Z., Zhang, X., Xu, P., & Sun, J. (2020). Dual hydrogen-bond donor group-containing Zn-MOF for the highly effective coupling of CO2 and epoxides under mild and solvent-free conditions. Inorganic Chemistry Frontiers, 7(10), 1995-2005.
Ghosh, S., Modak, A., Samanta, A., Kole, K., & Jana, S. (2021). Recent progress in materials development for CO2 conversion: Issues and challenges. Materials Advances, 2(10), 3161-3187.
Goel, C., Mohan, S., & Dinesha, P. (2021). CO2 capture by adsorption on biomass-derived activated char: A review. Science of The Total Environment, 798, 149296.
Gu, Y., Ping, R., Liu, F., Zhang, G., Liu, M., & Sun, J. (2021). Novel carbon nitride/metal oxide nanocomposites as efficient and robust catalysts for coupling of CO2 and epoxides. Industrial & Engineering Chemistry Research, 60(16), 5723-5732.
Guo, L., Zhang, R., Xiong, Y., Chang, D., Zhao, H., Zhang, W., Zheng, W., Chen, J., & Wu, X. (2020). The application of biomass-based catalytic materials in the synthesis of cyclic carbonates from CO2 and epoxides. Molecules, 25(16).
Heydari, P., Hafizi, A., Rahimpour, M. R., & Khalifeh, R. (2020). Experimental investigation of improved graphene oxide as an efficient catalyst for the sustainable chemical fixation of CO2 with epoxides. Journal of Environmental Chemical Engineering, 8(6), 104568.
Hu, L., Chen, L., Peng, X., Zhang, J., Mo, X., Liu, Y., & Yan, Z. (2020). Bifunctional metal-doped zif-8: A highly efficient catalyst for the synthesis of cyclic carbonates from CO2 cycloaddition. Microporous and Mesoporous Materials, 299, 110123.
Hu, W., Xie, Y., Lu, S., Li, P., Xie, T., Zhang, Y., & Wang, Y. (2019). One-step synthesis of nitrogen-doped sludge carbon as a bifunctional material for the adsorption and catalytic oxidation of organic pollutants. Science of The Total Environment, 680, 51-60.
Huang, C.-H., & Tan, C.-S. (2014). A review: CO2 utilization. Aerosol and Air Quality Research, 14(2), 480-499.
Huang, Z., Li, F., Chen, B., & Yuan, G. (2016). Cycloaddition of CO2 and epoxide catalyzed by amino- and hydroxyl-rich graphitic carbon nitride. Catalysis Science & Technology, 6(9), 2942-2948.
IEA. (2022). Carbon capture, utilisation and storage. Retrieved from https://www.iea.org/fuels-and-technologies/carbon-capture-utilisation-and-storage
International Biochar Initiate, I. (2015). Standardized product definition and product testing guidelines for biochar that is used in soil.
IRENA. (2021). World energy transitions outlook: 1.5°c pathway. Retrieved from https://irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook
Kiatkittipong, K., Mohamad Shukri, M. A. A., Kiatkittipong, W., Lim, J. W., Show, P. L., Lam, M. K., & Assabumrungrat, S. (2020). Green pathway in utilizing CO2 via cycloaddition reaction with epoxide—a mini review. Processes, 8(5), 548.
Kong, W., & Liu, J. (2019). Nitrogen-decorated, porous carbons derived from waste cow manure as efficient catalysts for the selective capture and conversion of CO2. RSC Advances, 9(9), 4925-4931.
Lach, D., Polanski, J., & Kapkowski, M. (2022). CO2 & mdash; a crisis or novel functionalization opportunity? Energies, 15(5), 1617.
Leu, M. K., Vicente, I., Fernandes, J. A., de Pedro, I., Dupont, J., Sans, V., Licence, P., Gual, A., & Cano, I. (2019). On the real catalytically active species for CO2 fixation into cyclic carbonates under near ambient conditions: Dissociation equilibrium of [BMIm][Fe(NO)2Cl2] dependant on reaction temperature. Applied Catalysis B: Environmental, 245, 240-250.
Li, K., Chen, W., Yang, H., Chen, Y., Xia, S., Xia, M., Tu, X., & Chen, H. (2019). Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials. Bioresource Technology, 280, 260-268.
Liang, S., Liu, H., Jiang, T., Song, J., Yang, G., & Han, B. (2011). Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chemical Communications, 47(7), 2131-2133.
Liu, C., Liu, X., Tan, J., Wang, Q., Wen, H., & Zhang, C. (2017). Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode. Journal of Power Sources, 342, 157-164.
Liu, N., Chen, F., & Tao, S. (2020). Hydrogen bond donors promoted organocatalyzedcycloaddition of CO2 with epoxides. Chinese Science Bulletin, 65(0023-074X), 3373.
Loh, Y. R., Sujan, D., Rahman, M. E., & Das, C. A. (2013). Sugarcane bagasse—the future composite material: A literature review. Resources, Conservation and Recycling, 75, 14-22.
Lourenço, M. A. O., Zeng, J., Jagdale, P., Castellino, M., Sacco, A., Farkhondehfal, M. A., & Pirri, C. F. (2021). Biochar/zinc oxide composites as effective catalysts for electrochemical CO2 reduction. ACS Sustainable Chemistry & Engineering, 9(15), 5445-5453.
Ma, X., Zou, B., Cao, M., Chen, S.-L., & Hu, C. (2014). Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO2 conversion. Journal of Materials Chemistry A, 2(43), 18360-18366.
Mujmule, R. B., Chung, W.-J., & Kim, H. (2020). Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chemical Engineering Journal, 395, 125164.
Noh, J., Kim, Y., Park, H., Lee, J., Yoon, M., Park, M. H., Kim, Y., & Kim, M. (2018). Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 64, 478-483.
Pescarmona, P. P. (2021). Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends. Current Opinion in Green and Sustainable Chemistry, 29.
Qi, J., Zhang, W., & Xu, L. (2018). Solvent-free mechanochemical preparation of hierarchically porous carbon for supercapacitor and oxygen reduction reaction. Chemistry – A European Journal, 24(68), 18097-18105.
Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055-1064.
Rehman, A., Saleem, F., Javed, F., Ikhlaq, A., Ahmad, S. W., & Harvey, A. (2021). Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides. Journal of Environmental Chemical Engineering, 9(2).
Samikannu, A., Konwar, L. J., Mäki-Arvela, P., & Mikkola, J.-P. (2019). Renewable N-doped active carbons as efficient catalysts for direct synthesis of cyclic carbonates from epoxides and CO2. Applied Catalysis B: Environmental, 241, 41-51.
Song, B., Guo, L., Zhang, R., Zhao, X., Gan, H., Chen, C., Chen, J., Zhu, W., & Hou, Z. (2014). The polymeric quaternary ammonium salt supported on silica gel as catalyst for the efficient synthesis of cyclic carbonate. Journal of CO2 Utilization, 6, 62-68.
Tao, D.-J., Mao, F.-F., Luo, J.-J., Zhou, Y., Li, Z.-M., & Zhang, L. (2020). Mesoporous N-doped carbon derived from tea waste for high-performance CO2 capture and conversion. Materials Today Communications, 22, 100849.
Tapia, J. F. D., Lee, J.-Y., Ooi, R. E. H., Foo, D. C. Y., & Tan, R. R. (2018). A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 13, 1-15.
Vidal, J. L., Andrea, V. P., MacQuarrie, S. L., & Kerton, F. M. (2019). Oxidized biochar as a simple, renewable catalyst for the production of cyclic carbonates from carbon dioxide and epoxides. ChemCatChem, 11(16), 4089-4095.
von der Assen, N., Jung, J., & Bardow, A. (2013). Life-cycle assessment of carbon dioxide capture and utilization: Avoiding the pitfalls. Energy & Environmental Science, 6(9), 2721-2734.
Wang, P., Tang, L., Wei, X., Zeng, G., Zhou, Y., Deng, Y., Wang, J., Xie, Z., & Fang, W. (2017). Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb(ii). Applied Surface Science, 392, 391-401.
Wang, Y., Jiang, B., Wang, L., Feng, Z., Fan, H., & Sun, T. (2021). Hierarchically structured two-dimensional magnetic microporous biochar derived from hazelnut shell toward effective removal of p-arsanilic acid. Applied Surface Science, 540, 148372.
Xie, X., Li, S., Zhang, H., Wang, Z., & Huang, H. (2019). Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation. Science of The Total Environment, 659, 529-539.
Xu, B.-H., Wang, J.-Q., Sun, J., Huang, Y., Zhang, J.-P., Zhang, X.-P., & Zhang, S.-J. (2015). Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: A multi-scale approach. Green Chemistry, 17(1), 108-122.
Xu, J., Gan, Y.-L., Pei, J.-J., & Xue, B. (2020). Metal-free catalytic conversion of CO2 into cyclic carbonate by hydroxyl-functionalized graphitic carbon nitride materials. Molecular Catalysis, 491, 110979.
Xu, X., Zheng, Y., Gao, B., & Cao, X. (2019). N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal, 368, 564-572.
Xue, Z., Jiang, J., Ma, M.-G., Li, M.-F., & Mu, T. (2017). Gadolinium-based metal–organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis. ACS Sustainable Chemistry & Engineering, 5(3), 2623-2631.
Yang, G.-X., & Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48, 396-405.
Zhu, S. S., Huang, X. C., Ma, F., Wang, L., Duan, X. G., & Wang, S. B. (2018). Catalytic removal of aqueous contaminants on n-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms. Environmental Science & Technology, 52(15), 8649-8658.
Zhuang, S., Lee, E. S., Lei, L., Nunna, B. B., Kuang, L., & Zhang, W. (2016). Synthesis of nitrogen-doped graphene catalyst by high-energy wet ball milling for electrochemical systems. International Journal of Energy Research, 40(15), 2136-2149.
侯鈺虹. (2020). 以楓香果實製備生質炭應用於二氧化碳環加成反應. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/s2e8eb
陳玉茵. (2018). 高值化甘蔗渣廢棄物為功能性生質碳應用於轉化co2. (碩士). 國立成功大學, 台南市. Retrieved from https://hdl.handle.net/11296/zc6mxp
校內:2027-08-11公開