簡易檢索 / 詳目顯示

研究生: 王隆昌
Wang, Lung-Chang
論文名稱: 溪頭地區坡地型土石流地形及發生特性研究
The characteristics of topography and occurrence of hillslope debris flows in Shitou area
指導教授: 林慶偉
Lin, Ching-Weei
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 崩塌地坡地型土石流
外文關鍵詞: landslides, hillslope debris flow
相關次數: 點閱:98下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   台灣位處歐亞板塊與菲律賓海板塊碰撞帶上,造山運動造成陡峭的地形及短而湍急的河川;加上全島雨量集中於夏季,造成山坡地災害如落石、淺層崩塌、土石流等土砂災害發生相當頻繁。921地震後,每遇豪雨或颱風,中部山區即傳出崩塌與土石流之災情,尤其以民國90年桃芝、納莉颱風所造成之災害損失最嚴重。在所發生之土砂災害類型裏,有些土石流發生於陡峭邊坡坡面且不具明顯溪溝地形,稱為坡地型土石流。
      本研究蒐集溪頭地區桃芝、納莉颱風災後航空照片、5 X 5 m DEM等資料,進行溪流型土石流、坡地型土石流航照判釋,並利用地理資訊系統空間分析功能,求取溪流長度、溪流平均坡度、河高寬比、集水區面積、形狀係數等地形參數資料。根據所得地形參數進行統計分析及地形因子相關性分析,探討並比較溪流型、坡地型土石流地形特性差異。此外,本研究選定距坡趾距離、平均坡度、崩塌地面積、921地表水平加速度、桃芝最大時雨量等因子,進行坡地型土石流發生潛感因子分析,探討坡地型土石流發生的條件。
      由分析結果發現,坡地型土石流具有溪流長度短、坡度陡峭、不具明顯溪溝地形,集水區面積小且形貌呈狹長狀;溪流水平長度與集水區面積有關係存在。溪流型土石流則具有溪流長度長、坡度緩、溪溝地形明顯,集水區面積大且形貌較為寬圓。溪流水平長度與集水區面積、溪流平均坡度與集水區面積、溪流水平長度與溪流平均坡度,皆有關係存在。由發生潛感因子分析得知,坡地型土石流源頭崩塌地的發育,可能受到921地震後續效應的影響。這些崩塌的土砂材料於適當的地形坡度、坡面運動距離、降雨條件下,開始沿著坡面運動,並使土砂材料與水充分混合,形成坡地型土石流。

     Taiwan results from collision of Eurasian plate and Philippine Sea plate, orogeny produces steep topography and short and rapid rivers; in addition, rainfall frequently focuses on summer season producing slope instability such as rock falls, debris slides and debris flows. After 921 earthquake, the disaster of landslides and debris flows often occur in Taiwan central mountain area during rainfalls or typhoons, especially during Typhoon Toraji and Nari in 2001.In all kinds of numerous disasters ,some debris flows occurred on steep slope and gully topography were unapparent, were named hillslope debris flows.
     This study collects aerial photos and 5 X 5m DEM of Shitou area after typhoon Toraji and Nari to identify channelized and hillslope debris flows. Geography information systems (GIS) is used to determine their topographic parameters, such as length, average slope, watershed area and the form factor of the watershed. According to the topographic parameters, the distributions of them and the relationships between them of channelized debris flows are compared with hillslope debris flows. Besides, this study choose five factors, such as slope, the area of landslides, the maximum precipitation brought by Typhoon Toraji, 921 horizontal peak ground accelerations, to determine the occurrence conditions of hillslope debris flows.
     Hillslope debris flows, originating on steep slopes have the short gully length, small watershed and the narrow shape of the watershed of the topographic characteristics and gully length is related to watershed area. Channelized debris flows, originated on gully have the long gully length, large watershed and the wide shape of the watershed of the topographic characteristics and gully length is related to watershed area ,average slopes of bed. Average slopes of bed are related to watershed area. From the result of factor analysis, landslides triggered hillslope debris flows may influence by 921 earthquake. The materials of landslides will start moving along hill slope and mix with water in full to initiate hillslope debris flows on proper slopes, distance of mass movement, and rainfall conditions.

    中文摘要.............................................Ⅰ 英文摘要............................................ Ⅱ 誌謝............................................... Ⅲ 目錄............................................... Ⅵ 圖目錄.............................................Ⅶ 表目錄..............................................Ⅸ 第一章 緒論 .......................................1 1.1研究動機與目的 .......................................1 1.2研究區域地理概述 ......................................2 1.2.1地理位置 ........................................ 2 1.2.2 地形概述 .......................................2 1.2.3 地質概述........................................5 第二章 前人研究....................................7 2.1坡地型土石流的定義.....................................7 2.2坡地型土石流相關用語與描述.............................9 2.2.1國外研究.........................................9 2.2.2國內研究........................................9 2.3坡地型土石流的地形特性研究............................11 2.3.1國外研究.......................................11 2.3.2國內研究........................................12 2.4坡地型土石流的發生特性研究............................16 2.4.1國外研究........................................16 2.4.2國內研究........................................17 第三章 研究方法...................................19 3.1航照判釋..............................................19 3.2土石流地形計測分析....................................21 3.2.1土石流溪流長度..................................21 3.2.2土石流溪流平均坡度..............................21 3.2.3土石流溪流河高寬比..............................21 3.2.4集水區面積與形狀係數............................23 3.3土石流地形因子相關性分析..............................23 3.4坡地型土石流潛感因子分析..............................23 3.4.1潛感因子選取.....................................23 3.4.2潛感因子資料取得.................................26 3.4.3坡地型土石流潛感因子分析.........................28 第四章 研究結果...................................29 4.1航照判釋..............................................29 4.2研究區域土石流基本地形特性結果........................33 4.2.1 土石流溪流長度特性.............................33 4.2.2土石流溪流平均坡度..............................33 4.2.3土石流溪流河高寬比..............................34 4.2.4集水區面積......................................36 4.2.5集水區形狀係數..................................37 4.3地文因子相關性分析....................................38 4.3.1溪流長度與溪流平均坡度之關係....................38 4.3.2溪流長度與集水區面積之關係......................40 4.3.3溪流平均坡度與集水區面積之關係..................41 4.4發生潛感因子結果......................................44 4.4.1距坡趾距離......................................44 4.4.2地形坡度........................................44 4.4.3源頭崩塌地面積..................................45 4.4.4 921水平加速度..................................47 4.4.5桃芝最大時雨量..................................47 第五章 討論.............................................51 5.1坡地型土石流的地形特性比較............................51 5.1.1溪流長度.........................................51 5.1.2溪流平均坡度.....................................52 5.1.3河高寬比.........................................53 5.2坡地型土石流與溪流型土石流災害發生特性比較............54 5.3溪流長度與集水區面積之關係............................56 5.4淺層崩塌轉換成坡地型土石流之條件初探..................56 5.4.1距坡趾距離.......................................57 5.4.2地形坡度.........................................58 5.4.3源頭崩塌地面積...................................59 5.4.4 921水平加速度..................................59 5.4.5 桃芝最大時雨量..................................63 5.4.6 淺層崩塌地轉換成坡地型土石流的發生潛勢..........63 第六章 結論.............................................66 參考文獻...................................................67 附錄一....................................................72 附錄二....................................................75 附錄三....................................................90 附錄四....................................................95 圖目錄 圖1-1 研究區域地理分佈圖..................................4 圖1-2 研究區域地質圖......................................6 圖2-1 坡地型土石流橫剖面圖................................8 圖2-2 坡地型土石流縱剖面圖................................8 圖2-3 坡地型土石流示意圖.................................10 圖2-4 坡地型土石流示意圖.................................12 圖2-5 九九峰地區的坡地型土石流...........................13 圖2-6 坡地型土石流發生條件...............................17 圖3-1 研究工作流程圖.....................................20 圖3-2 河高、河寬量測示意圖................................22 圖3-3 DEM網格資料計算示意圖..............................27 圖4-1 土砂災害判釋結果...................................30 圖4-2 坡地型土石流.......................................30 圖 4-3 坡地型土石流與溪流型土石流...........................31 圖4-4 溪流型與坡地型土石流溪流長度分佈圖.................32 圖4-5 溪流型與坡地型土石流溪流平均坡度分佈圖...............35 圖 4-6 溪流型與坡地型土石流集水區面積分佈圖.................35 圖 4-7 溪流型與坡地型土石流集水區形狀係數分佈圖............37 圖 4-8 溪流型土石流溪流水平長度與溪流平均坡度關係..........38 圖4-9 坡地型土石流溪流長度與溪流平均坡度關係..............39 圖4-10溪頭地區土石流溪流水平長度與集水區面積關係...........40 圖4-11溪流型土石流溪流平均坡度與集水區面積關係.............42 圖4-12坡地型土石流溪流平均坡度與集水區面積關係.............43 圖4-13坡地型源頭崩塌地與邊坡平均坡度關係圖.................43 圖4-14坡地型源頭崩塌地與邊坡平均坡度關係圖.................46 圖4-15 坡地型源頭崩塌地面積分佈.............................46 圖4-16 坡地型源頭崩塌與921水平加速度關係圖.................48 圖4-17 坡地型源頭崩塌地與桃芝最大時雨量關係圖...............48 圖4-17 坡地型源頭崩塌地與桃芝最大時雨量關係圖...............48 圖4-18坡地型源頭崩塌與崩塌面積及桃芝最大時雨量之關係.......50 圖4-19坡地型源頭崩塌與崩塌面積及距坡趾距離之關係...........50 圖5-1 坡地型源頭崩塌與淺層崩塌地距坡趾距離之比較............60 圖5-2坡地型源頭崩塌與淺層崩塌平均坡度之比較................61 圖5-3 坡地型源頭崩塌與淺層崩塌地崩塌面積之比較..............61 圖5-4坡地型源頭崩塌與淺層崩塌地921水平加速度之比較........62 圖5-5坡地型源頭崩塌與淺層崩塌地桃芝最大時雨量之比較........62 圖5-6 溪頭淺層崩塌地轉換成坡地型土石流之關係................64 圖5-7 溪頭淺層崩塌地轉換成坡地型土石流之關係................64 圖5-8 溪頭淺層崩塌地轉換成坡地型土石流之關係................65 表目錄 表2-1 坡地型土石流相關用語...............................11 表2-2 前人研究的坡地型土石流地形計測結果.................14 表2-3 前人研究的溪流型土石流地形計測結果.................14 表 2-4 坡地型土石流相近災害判釋依據........................16 表2-5 影響坡地型土石流發生因子...........................18 表3-1 溪頭及鄰近地區雨量站桃芝颱風降雨資料...............28 表4-1 不同災害類型統計...................................31 表4-2 溪流型與坡地型土石流坡度比統計.....................36 表4-3土石流河高寬比.....................................36 表 4-4 坡地型源頭崩塌距坡趾距離統計........................44 表5-1 溪頭地區土石流溪流長度錯誤矩陣分類表.................51 表5-2 溪頭地區土石流溪流平均坡度錯誤矩陣分類表.............53 表5-3 溪頭地區土石流高寬比錯誤矩陣分類表...................54 表5-4 淺層崩塌地個數統計....................................57

    中國石油公司臺灣油礦探勘總處,嘉義圖幅(十萬分之一),1986。

    王如意、易任,應用水文學,茂昌圖書有限公司,台北市,第129- 149頁,2001。

    吳素慧,南投縣信義鄉神木村出水溪土石流流動現象之探討,國立台灣大學地理資源學系研究所碩士論文,82頁,1997。

    何明憲,台灣中部災區坡地型土石流發生特性之研究,國立台灣大學土木工程學研究所碩士論文,152頁,2002。

    呂岡侃,南投縣九九峰土石流發生區之地形特徵,國立台灣大學地理資源學系研究所碩士論文,145頁,2002。

    李德基,泥石流減災理論與實踐,中國大陸科學出版社,北京,第52-62頁,1997。

    林美聆、游繁結、林炳森、范正成、王國隆,集集震後土石流二次災害危險性之評估,地工技術,第81期,第97-104頁,2000。

    林美聆,921 坡地型土石流二次災害機制與防治研究及案例建立,國家地震工程研究中心報告,147頁,2002。

    林慶偉、謝正倫、王文能,集集地震對中部崩塌與土石流的影響,臺灣之活動斷層與地震災害研討會,第124-134頁,2002。

    林慶偉,陶芝風災土石流災害初步調查成果,土石流災害及防治研討會論文集,第57- 82頁,2001。

    周憲德,發生土石流之臨界降雨特性分析,中國土木水利工程學刊,第14卷,第1期,第1-8頁,2002。

    張子瑩,降雨與地震形成崩塌區位之研究,國立台灣大學地理資源學系研究所碩士論文,58頁,2001。
    張寶堂,南投縣東埔溫泉地質,經濟部地質調查所特刊,第三號,第91-102頁,1984。

    連惠邦、林柏壽、薛祖淇,主動崩落型土石流流出特性之試驗研究,中華水土保持學報,第31卷第3期,第217-226頁,2000。

    陳晉琪、謝正倫、林慶偉,集集地震前後土石流發生溪流地形特性之比較分析,土石流地質調查及防災對策研討會論文集,第12-1-12-6頁,2003。

    陳晉琪、謝正倫、林慶偉,台灣中部地區土石流災害溪流之地形特性,中華水土保持學報,第35卷第1期,第25-34頁,2004。

    游繁結,崩落型土石流之機制研究,行政院國家科學委員會防災科技研究報告,NSC-78-0404-P005-06B,1990。

    詹錢登,土石流理論,科技圖書股份有限公司,台北市,第1- 42頁,2000。

    謝有忠,陳有蘭溪流域土石流發育之地質控制,國立成功大學地球科學研究所碩士論文,120頁,1999。

    蘇苗彬、陳育志,液化引致土石啟動的關係探討,中華水土保持學報,第34卷第4期,第381-388頁,2003。
    +
    Brunsden, D., In Process in geomorphology, Edward Arnold Ltd., London,pp.130-186, 1979.

    Davidson D., and Grieve A, Spatial and temporal trends in upland erosion and sedimentation, SNH Commissioned report F00AC 106, 2002.

    Khazai, B., and Sitar, N., Evaluation of factors controlling earthquake-induced landslides cauased by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events, Engineering Geology,Vol.71,pp.79-95,2003.

    Campbell, R.H., Debris flow originating from soil slips during rainstorms in Southern California, Quaternary Journal of Engineering Geology, Vol.7, pp.339-349, 1974.

    Cheng, J.D., Yeh J.L. and Dong Y.H., Landslides and debris flows induced by typhoon Toraji, July 29-30,2001 in central Taiwan, Debris flow Hazards Mitigation: Mechanics, Prediction and Assessment; Proceedings 3rd International DFHM Conference, Switzerland, August.Rotterdam: Millpress, pp.919-929, 2003.

    Dai, F.C., Lee, C.F., Li J. and Xu, Z.W., Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong, Environmental Geology, Vol.40,No.3,pp.381-391,2001.

    Innes, J.L., Debris flows, Progress in Physical geography, Vol.7, No.4, pp.469-501, 1983.

    Keefer D.K., Landslides caused by earthquakes, Geological Society of America Bulletin, Vol.95, pp.406-421, 1984.

    Keefer D.K., Statistical analysis of an earthquake-induced landslide distribution-the 1989 Loma Prieta, California event, Engineering Geology,Vol.58,No.3-4,pp.231-249,2000.

    Larsen M. C., and Parks J., How wide is a road? The association of roads and mass-wasting in a forested montane environment, Earth Surface Processes and landforms, Vol.22, pp.835-848, 1997.

    Lewkoicz, A.G., and Hartshorn, J., Terrestrial record of rapid mass movements in the Sawtooth Range, Ellesmere Island, Northwest Territories, Canada, Canadian Journal of Earth Science, Vol.35, pp.55-64,1998.

    Lin, C.W., Wu, M.C., and Shieh, C.L., Influence of geology on debris flows: examples from Hsin-Yi, Nantou Country, Taiwan, Debris flow Hazards Mitigation: Mechanics, Prediction and Assessment; Proceedings 2nd International DFHM Conference, Taipei, Rotterdam: Balkema, pp.169-176, 2000.

    Lin, C.W., Shieh, C.L., Yuan, B.D., Shieh Y.C., Liu, S.H. and Lee,S. Y., Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows:example from the Chenyulan River watershed, Nantou, Taiwan., Engineering Geology,Vol.71,No.1, pp.49-61,2003.

    Lorente, A., Beguerua, S. and Garcia-Ruiz, J.M., Debris flow characteristics and relationships in the Central Spanish Pyrenees, Report for DANOCLES Porject, 2001.

    Lorente, A., Beguerua, S and Garcia-Ruiz, J.M., Comparing debris flow relationships in the Alps and in Central Spanish Pyrenees, Report for DANOCLES Porject, 2002.

    Lorente, A., Beguerua, S. and Garcia-Ruiz, J.M.,Factors explaining the spatial distribution of hillslope debris flows: a case study in the Flysch Sector of the Central Spanish Pyrenees, Mountain Research and development, Vol.22, No.1,pp.32-39, 2002.

    Lorente, A., Beguerua, S. and Garcia-Ruiz, J.M., Debris flow characteristics and relationships in the Central Spanish Pyrenees, Natural Hazards and Earth System Sciences, Vol.3, pp.683-692,2003.

    Rickenmann, D. and Zimmermann, M., The 1987 debris flows in Switzerland:documentation and analysis, Geomorphology, Vol.8, pp.175-189, 1990.

    VanDine, D.F., Debris flows and debris torrents in the Southern Canadian Cordillera, Canadian Geotechnical Journal, Vol.22, 44-68,1985.

    Van Steijn, H., de Ruig, J. and Hoozemans, F., Morphological and mechanical aspects of debris flows in parts of the French Alps, Zeitschrift fur Geomorphologie, Vol.32, 143-161,1988.

    下載圖示 校內:立即公開
    校外:2005-09-07公開
    QR CODE