簡易檢索 / 詳目顯示

研究生: 曾敏惠
Tseng, Min-Hui
論文名稱: 1-x(Bi0.5Na0.5)TiO3 –xBa(Zn1/3Nb2/3)O3 系統之合成、晶體結構、及介電性質
Synthesis, Crystal Structure, and Dielectric Propertiesof 1-x(Bi0.5Na0.5)TiO3 –xBa(Zn1/3Nb2/3)O3 System
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 79
中文關鍵詞: 去極化溫度點 (Td)容忍因子 (t)形變相界 (MPB)
外文關鍵詞: morphotropic phase boundary, tolerance factor (t), depolarization temperature
相關次數: 點閱:62下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著國際環保意識的提高,使得許多含有對於環境及人體健康有疑慮的元素及材料已漸漸被禁止使用,而對於壓電陶瓷材料來說,也必定會朝開發出更優良的無鉛壓電材料方向去努力。
    (Bi0.5Na0.5)TiO3 為目前無鉛壓電材料中較具有潛力的材料系統,故本研究將以(Bi0.5Na0.5)TiO3 當作 matrix 添加Ba(Zn1/3Nb2/3)O3 以合成出具有 MPB (morphotropic phase boundary) 存在之固溶系統,並針對此系統做詳盡的晶體結構及基本電性質的分析,以連結電性質和晶體結構之關係,並藉由實驗結果探討其應用為壓電材料的可能性。
    經實驗結果可以確定以下幾點,第一,以二階段煅燒合成(1-x)(Bi0.5Na0.5)TiO3
    -xBa(Zn1/3Nb2/3)O3 單一相存在的固溶系統,且本實驗中每一個成分點之燒結相對密度均達 97% 以上。第二,此材料系統於高溫時不穩定,易分解產生第二相,故對其燒結溫度不能過高。第三,詳盡說明本系統隨著成份變動使其晶體變化的過程,在添加量 x 介於 0.08 ~ 0.1 之間時,為 Hexagonal 與 Cubic 兩相共存的區域,且經由計算得到其晶格常數、晶格體積及理論密度值。第四,此材料系統因添加Ba(Zn1/3Nb2/3)O3,導致去極化溫度點 (Td) 大幅下降,於室溫無法進行極化,固無法探討其壓電性質。第五,介於本系統之 MPB區域內的成分點,其介電常數均明顯比周圍兩側要佳。

    With the raising of the environmental sense, some materials which contain harmful health elements will be inhibited. For the piezoelectric materials, new lead-free piezoelectric materials with better electric properties will also be developed.
    (Bi0.5Na0.5)TiO3 is an excellent candidate system in lead-free piezoelectric materials system at present. In this research, (Bi0.5Na0.5)TiO3 is matrix and Ba(Zn1/3Nb2/3)O3 will be doped into this composition system to synthesize (1-x)(Bi0.5Na0.5)TiO3-xBa(Zn1/3Nb2/3)O3 solid solution system which contains MPB (morphotropic phase boundary) region. The crystal structure and electric properties of this system were studied detail. According to the changes of the crystal structure and electric properties which resulted from the composition variation, the relationship between the crystal structure and electric properties, even the possibility of application were also studied further in this research.
    The result show that: First, (1-x) (Bi0.5Na0.5)TiO3-xBa(Zn1/3Nb2/3)O3 solid solution system could be synthesized successfully by tow-step calcinations in this research. And the relative density of sintered bulks of each composition can achieve 97% or over. Second, the BNT-BZN system is not stable at high temperature,so we must control the sintering condition. Third, the phase transformation with composition variation of this system was showed in detail in this research. The MPB, Hexagonal and Tetragonal coexist, was found when x between 0.08 and 0.1. Besides, the cell parameters, cell volume, and theoretical density were also obtained after the cell parameters calculation. Fourth, the system can’t polarize because of low Td , so we don’t discuss the piezoelectric property, here. Fifth, dielectric constant in MPB region are superior than surroundings.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 V 表目錄 VIII 1-1 前言 1 1-2 研究方向及目的 1 第二章 前人研究及理論基礎 5 2-1晶體結構及電性質 5 2-1-1 Bi0.5Na0.5TiO3﹙鈦酸鉍鈉﹚ 5 2-1-2 Bi0.5Na0.5TiO3與 Pb(Zr,Ti)O3比較 7 2-1-3 BNT-based solid solution introduction 8 2-1-4 Ba(Zn1/3Nb2/3)O3 11 2-2 置換原理 15 2-2-1 置換原理 15 2-2-2 容忍因子 16 2-2-3 異價取代機制 16 2-3 介電性質 17 2-3-1極化機制 18 2-3-2 介電特性參數 19 2-4 壓電性質 23 2-4-1 壓電效應 23 2-4-2 壓電特性參數 25 2-4-3 形變相界 29 2-5 鐵電性質 29 2-5-1 鐵電效應 29 2-5-2 鐵電滯迴曲線 30 第三章 實驗方法及步驟 32 3-1 起始原料 32 3-2 粉末及燒結體製備 32 3-2-1 粉末製備 32 3-2-2 粉末之 DTA/TG 分析 33 3-2-3 煅燒條件測試及粉末合成 33 3-2-4 燒結體製備及燒結條件試驗 33 3-3 材料特性分析 38 3-3-1 燒結體密度量測 38 3-3-2 相鑑定 38 3-3-3 晶格常數分析 38 3-3-4 顯微結構觀察 44 3-3-5 拉曼光譜分析 44 3-4 材料性質分析 46 3-4-1 相轉換溫度量測 46 3-4-2 陶瓷體電性質量測樣品準備 46 3-4-3 介電常數及介電損失因子量測 46 3-4-4 極化 47 第四章 結果與討論 48 4-1 粉末合成 48 4-1-1 起始混合粉末之熱差/熱重分析 48 4-1-2 煅燒後粉末之 XRD相鑑定 48 4-2 燒結 49 4-2-1燒結測試及燒結體之微結構觀察 49 4-2-2 燒結條件及燒結緻密度 50 4-3 晶體結構分析 61 4-3-1晶格常數分析 61 4-3-2拉曼光譜分析 62 4-4 性質量測 66 4-4-1 介電常數 66 4-4-2 高溫介電常數 66 4-5 綜合討論 70 4-5-1 成分與結構之關係 70 4-5-2 結構與性質之關係 71 第五章 結論 73 參考文獻 74 附錄A 78 附錄B 79

    [1] Y. Lin, “Effects of Eu2O3 on the phase transformation and piezoelectric properties of Na0.5Bi0.5TiO3-based ceramics,” J. Mater. Sci., B, 99, 449-452, 2003.
    [2] H. Nagata and T. Takenaka, “Lead-free piezoelectric ceramics of
    Bi1/2Na1/2TiO3-KNbO3-1/2(Bi2O3*Sc2O3) system,” Jpn. J. Appl. Phys., 37,
    5311-5314, 1998.
    [3] X. X. Wang, “Electromechanical and ferroelectric properties of Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3–BaTiO3 lead-free piezoelectric ceramics,” Appl. Phys. Letts., 85[1], 91-93, 2004.
    [4] M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials,” Clarendon, Oxford, 1977.
    [5] 吳朗, 電子陶瓷-介電, 全欣科技圖書, pp. 222-24, 1994.
    [6] 吳朗, 電子陶瓷-介電, 全欣科技圖書, pp. 224-27, 1994.
    [7] G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds,” Sov. Phys., Solid State (Engl.Transl.), 1[10], 1429-1437, 1960.
    [8] V. A. Bokov and I. E. Mylnikova, “Ferroelectric properties of monocrystal of new perovskite compounds,” Sov. Phys., Solid State (Engl.Transl.), 2, 11, 2428-2432, 1961.
    [9] V. A .Bokov and I. E. Mylnikova, “Electrical and optical properties of single crystals of ferroelectrics with a diffuse phase transition,” Sov. Phys., Solid State (Engl.Transl.), 3, 3, 613-623, 1961.
    [10] N. Setter and L. E. Cross, “The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” J. Mater. Sci., 15, 2478-2482, 1980.
    [11] N. Setter and L. E. Cross, “The role of B-site cation disorder in Diffusion phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys., 51[8], 4356-60, 1980.
    [12] S.B. Vakhrushev, V. A. Isupov, B. E. Kvyakovsky, N. M. Okuneva, I. P. Pronin, G. A. Smolensky and P. P. Syrnikov. “Phase transition and soft mode in sodium bismuth titanate,” Ferroelectrics, 63, 153-160., 1985.
    [13] H. S. Gu, “Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics,” Mater. Lett, 59, 1649-1652, 2005.
    [14] T. Takenaka, K. I. Maruyama and K. Sakata, “Bi1/2Na1/2TiO3- BaTiO3 system for lead-free piezoelectric ceramics,” Jpn. J .Appl. Phys., 30 [9B], 2236-2239, 1991.
    [15] B. J. Chu, “Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics,” J. Eur. Ceram. Soc., 22, 2115-2121, 2002.
    [16] Q. Xu, “Synthesis and piezoelectric and ferroelectric properties of (Na0.5Bi0.5)1−xBaxTiO3 ceramics,” Mat. Chem. and Phys., 90, 111-115, 2005.
    [17] Y. Hosono, “Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3–BaTiO3,” Jpn. J. Appl. Phys., 40, 5722-5726, 2001.
    [18] X. Wang, “Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics,” Solid State Commun., 125, 395-399, 2003.
    [19] C. D. Feng, “Electrical properties of La3+-Doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics,” Jpn. J. Appl. Phys., 42, 7387-7391, 2003.
    [20] H.D. Li, “Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 morphotropic-phase-boundary composition,” Mater. Lett., 58, 1194-1198, 2004.
    [21] X. Wang, “(Bi1/2Na1/2)TiO3-Ba(Cu1/2W1/2)O3 lead-free piezoelectric ceramics,” J. Am. Ceram. Soc., 86[10], 1809-1811, 2003.
    [22] W. Chen, “Dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 ferroelectric ceramics,” Ceram. Inter., 31, 139-142, 2005.
    [23] D. Hennings, A. Schnell and G. Simon, “Diffuse Ferroelectric Phase Transitions
    in Ba(Ti1-yZry)O3 ceramics,” J. Am. Ceram. Soc., 65, 539, 1982.
    [24] X. G. Tang, “Effect of grain size on the dielectric properties and tunabilities of
    sol-gel derived Ba(Zr0.2Ti0.8)O3,” Solid State Commun., 121, 297, 2004.
    [25] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, New York, 1976.
    [26] B. Jaffe, W. R. Cook and H. Jaffe, Piezoelectric ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, 1971.
    [27] A. M. Glazer, “Simple ways of determining perovskite structure,” Acta Cryst ., A31, 756-762, 1975.
    [28] H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu, and Y. W. Song, “Microstructural observations in barium calcium magnesium niobate,” J. Am. Ceram. Soc., 83, 2267-2272, 2000.
    [29] O. Muller and R. Roy, The major ternary structural families, Springer, New York, 1974.
    [30] 魏樂利,交流極化場對壓電陶瓷特性之影響。國立成功大學電機工程研究所碩士論文,1995。
    [31] 吳朗,電子陶瓷(壓電),全欣科技圖書,1994
    [32] 黃茂松,Pb(Ni1/3Sb2/3)O3-PbZrO3-PbTiO3三成份系壓電陶瓷材料之壓電特性研究。國立成功大學電機工程研究所碩士論文,1996。
    [33] 謝煜弘,電子材料,新文京開發出版有限公司,2003。
    [34] C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate
    structure type materials, Ph. D. thesis, The Pennsylvania State University, U.
    S. A., 1990.
    [35] C. Zhou,X. Liu, “Effect of B-site substitution of complex ions on dielectric and piezoelectric properties in(Bi1/2Na1/2)TiO3 piezoelectric ceramics, ”Materials Chemistry and Phys., 413-416 (2008).
    [36] T. Takenaka, “Current status and prospects of lead-free piezoelectric
    Ceramics,” J. Eur. Ceram. Soc., 25, 2693-2700, 2005.
    [37] A.S. Bhalla, R. Guo and R. Roy, “The perovskite structure – a review of
    its role in ceramic science and technology,” Mat.. Res. Innovat., 4, 3-26, 2000.
    [38] T. Takenaka and H. Nagata, .Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3
    -1/2(Bi2O3•Sc2O3) system,. Jpn. J. Appl. Phys. I, 36 [9B] 6055-6057 (1997).
    [39] R. Palai, R. N. P. Choudhary and H. S. Tewari, “Antiferroelectric phase transition
    in Pb(Mg1/2X1/2)O3 (X = Mo and W),” Mater. Chem. Phys., 73 86-92, 2002.
    [40] O. Muller and R. Roy, The Major Ternary Structural Families, Springer-Verlag,
    Berlin, 1974.
    [41] 李宜芳,1-x(Bi0.5Na0.5)TiO3–xBa(Ti0.95Zr0.05)O3 系統之合成、晶體結
    構、及壓電性質。國立成功大學資源工程研究所碩士論文,2006。
    [42] 曹良闊,(Bi0.5Na0.5)TiO3–(Ba1-aSra)TiO3 系統之合成、晶體結構、及壓電性質。國立成功大學資源工程研究所碩士論文,2007。

    下載圖示 校內:立即公開
    校外:2009-07-01公開
    QR CODE