| 研究生: |
楊順傑 Yang, Shun-Jie |
|---|---|
| 論文名稱: |
同質酒精衝擊式霧化特性之研究 The Atomization Characteristics of Ethanol Like-Doublet Impinging Jets |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 液膜 、衝擊式霧化 、高壓環境 |
| 外文關鍵詞: | SMD, Impinging jets, Ambient pressure |
| 相關次數: | 點閱:78 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
衝擊式霧化主要應用於液態火箭引擎燃燒室,可分為同質式霧化及異質式霧化,小型液態火箭多採用自燃性推進劑,以異質式霧化為主。本研究以濃度95%之酒精及純水作為工作流體,衝擊角度為60°、90°及120°,噴注孔口直徑為0.3、0.5及0.7 mm,模擬自燃性推進劑MMH及NTO之衝擊霧化,進行無毒性之冷流實驗,延續過去之研究而對影響霧化液滴大小之參數加以探討,包括噴流流速、液膜型態、液膜幾何形狀、噴注器孔徑、衝擊角及環境壓力,並與先前之研究結果及理論分析做比較,期望能增進對衝擊霧化現象的了解,並有助於液態火箭噴注器的設計。
在液膜型態方面,同質酒精衝擊可形成六種液膜型態,並且無穿孔破裂液膜的出現。當衝擊角為120°時,液膜在階梯式液緣模式時即破裂,使之無法形成封閉液緣模式,而衝擊角度愈大其液膜型態會在較低流速時轉換模式。
在液膜幾何形狀方面,衝擊角度愈大,液膜長寬比愈小。由實驗結果可得一經驗公式以方便求取液膜平面徑向與液緣切線之夾角,且液膜長度可由Ibrahim等人[8] 所推導之公式乘上一常數值求得,此常數值與黏滯係數有關係。在低流速時,重力效應會使液膜向下偏移,但對液膜型態及大小影響不大。
在霧化液滴平均大小方面,衝擊角60°時,同質酒精衝擊霧化液滴在流速增加時出現不減反升之現象。當液膜型態為完全發展模式前,孔口直徑愈大,其霧化液滴愈小;流速再增加時,則趨勢相反,但霧化液滴大小差距不大。純水-酒精之異質式衝擊霧化,其霧化液滴與酒精之同質衝擊霧化液滴較為接近,酒精之低表面張力特性為重要因素。
在環境壓力之影響方面,其對衝擊液膜之幾何形狀並無影響,但環境壓力愈大,液膜型態在較低流速時轉換模式。當液膜為完全發展模式前,環境壓力愈高其霧化液滴平均粒徑愈小,當流速增至20 m/s時,環境壓力對霧化液滴大小影響不大,同質純水衝擊霧化液滴大小接近100 μm。
Impinging jet atomization is mainly used in liquid rocked proportion systems, including like-doublet and unlike-doublet injectors. The latter is usually applied to bipropellant small-scaled liquid rocket, which uses storable and hypergolic propellants. In this research, 95% ethanol was used as the working fluid to simulate the impinging jets. The orifices of the injector element are 0.3, 0.5, and 0.7 mm in diameter, impinging angle is set to be 60°, 90°, and 120° respectively. Main parameters of atomizing performance are discussed, such as jet velocity, impinging angle, jet diameter and ambient pressure. The results are also compared with previous research.
In liquid shape mode, six distinct flow patterns can be observed, and the perforated film doesn’t appear. The larger impinging angle, the lower threshold jet velocity of mode transition is observed.
Regarding the liquid film size, the aspect ratio decreases with increasing impinging angle. One empirical equation can be used to calculate the tangential angle, and the equation induced by Ibrahim et al.[8] can figure out the film length by multiply a constant.
When the impinging angle reaches 60°, there is a sudden increase of mean drop size during the increment of jet velocity. The SMD appears to be inversely proportional to the jet diameter until film shape transit to open mode. The SMD of unlike-doublet impinging is highly influenced by the surface tension of liquid.
High ambient pressure has no effect on film size, but it causes the liquid shape change mode in lower jet velocity. In higher ambient pressure, smaller SMD value is measured before the liquid film transit into open mode. When the jet velocity approaches 20 m/s, the SMD of water-like impinging jets reach 100 μm, which is independent of ambient pressure from 2 to 9 bar.
1.Dombrowski, N. and Hooper, P. C., “The Performance Characteristics of an Impinging Jet Atomizer in Atmospheres of High Ambient Density,” Fuel, pp.323-334. 1962.
2.Dombrowski, N. and Hooper, P. C. “The effect of ambient density on drop formation in sprays,” Chemistry Engineering Science, Vol. 17, pp. 291-305. 1962.
3.Dombrowski, N. and Hooper, P. C., “A Study of the Sprays Formed by Impinging Jets in Laminar and Turbulent Flow,” Journal of Fluid Mechanics, Vol. 18, pp. 392-400, 1964.
4.Dombrowski, N. and Johns, W. R., “The aerodynamic instability and disintegration of viscous liquid sheets,” Chemical Engineering Science, Vol. 18, pp. 203-214, 1963.
5.Hasson, D. and Peck, R. E., “Thickness Distribution in a Sheet Formed by Impinging Jets,” A. I. Ch. E. Journal, pp. 752-754, September 1964.
6.Heidmann, M. F., Priem, R. J., and Humphrey, J. C., “A Study of Sprays Formed by Two Impinging Jets,” NACA TN 3835, March 1957.
7.Huang, J. C. P., “The break-up of axisymmetric liquid sheets,” Journal of Fluid Mechanics, Vol. 43, Part 2, pp. 305-319, 1970.
8.Ibrahim, E. A. and Przekwas, A. J., “Impinging jets atomization,” Phys. Fluids A, Vol. 3, No. 12, pp. 2981-2987, December 1991.
9.Kang, B. S. and Poulikakos, D., “Holography Experiments in a Dense High-Speed Impinging Jet Spray,” Journal of propulsion and Power, Vol. 12, pp. 341-347, 1996.
10.Kang, B. S., Shen, Y. B., and Poulikakos, D., “Holography Experiments in the Breakup Region of A Liquid Sheet Formed by Two Impinging Jets,” Atomization and Spray, vol. 5, pp. 387-402, 1995.
11.Lai, W. H., Huang T. H., Huang, W., and Jiang, T. L., “Flow Visualization on The Atomization Characteristics of An Impinging-Jet by Physical Properties Change of Fluid,” Two-Phase Flow Modelling And Experimentation Symposium, pp. 1379-1384, 1999.
12.Lai, W. H., Huang, W., and Jiang, T. L., “Characteristic Study on The Like-Doublet Impinging Jets Atomization,” Atomization and Sprays, Vol. 9, pp. 277-289, 1999.
13.Lefebvre, A. H., “Atomization and Spray,” Hemisphere Publication Corporation, 1989.
14.Miller, K. D., “Distribution of Spray From Impinging Liquid Jets,” Journal of Fluid Mechanics, Vol. 87, part 2, pp. 1132-1133, 1960.
15.Naber, J. D., and Reitz, R. D., “Modeling Engine Spray/Wall Impingement,” SAE Paper No.880107, 1988.
16.Ranz, W. E., “Some Experiments on the Dynamics of Liquid Films,” Journal of Applied Physics, Vol. 30, No. 12, pp.1950-1955, December 1959.
17.Rupe, J. H., “A Correlation of between the Dynamics Properties of a Pair Impinging Streams and the Uniformity of Mixture-Ratio Distribution in the Resulting Spray,” JPL Prog., Rep.20-195, 1956.
18.Ryan, H. M., Anderson, W. E., and Santoro, R. J., “Atomization Characteristics of Impinging Liquid Jets,” Journal of Propulsion and Power, Vol. 11, No. 1, pp. 135-145, 1995.
19.Shen, Y. B., and Poulikakos, D., “Impinging Jet Atomization At Elevated and Supercritical Ambient Temperature and Pressure Conditions,” Experimental Heat Transfer, pp. 23-29, 1998.
20.Squire, H. B., “Investigation of the instability of a moving liquid film” British Journal of Applied Physics, Vol. 4, pp. 167-169, 1953.
21.Strakey, P. A., and Talley, D. G., “Spray Characteristics of Impinging Jet Injectors at High Back-Pressure,” Eighth International Conference on Liquid on Liquid Atomization and Spray Systems, Pasadena, CA, USA, July 2000.
22.Taylor, G., “Formation of thin flat sheets of water,” Proceedings of Royal Society of London, Vol.259, No.1296, pp.1-17, 1960.
23.Taylor, G., “The dynamics of thin sheets of fluid. II. Waves on fluid sheets,” Proceedings of Royal Society of London, Vol.253, No.1274, pp.296-312, 1959.
24.Tokuoka, N. and Sato, G. T., “The Study of a Liquid Atomization by Impinging of Two Jets,” Bulletin of the JSME, Vol. 21, No.155, pp. 885-892, May 1978.
25.王修哲, “同質與異質衝擊式注油器霧化特性研究,” 國立成功大學碩士論文, 2002.
26.朱建儒, “異質衝擊噴流霧化與混和之研究,” 國立成功大學碩士論文, 2003.
27.黃文榮, “同質衝擊噴流特性之研究,” 國立成功大學博士論文, 1998.
28.黃祖宏, “液體物理性質對衝擊式注油器霧化特性之研究,” 國立成功大學碩士論文, 1998.