| 研究生: |
段必貴 Duan, Bi-Gui |
|---|---|
| 論文名稱: |
不同金屬摻雜於氧化鋅奈米柱特性研究及其應用 Investigating Properties of Different Metal Doped-on ZnO Nanorods and Its Applications |
| 指導教授: |
張守進
chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 氧化鋅 、水熱法 、銦摻雜 、鎵摻雜 、光檢測器 、場發元件 |
| 外文關鍵詞: | ZnO nanorods, hydrothermal, indium-doped, gallium-doped, photodetector, humidity sensor, field emitter |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究不同金屬摻雜於氧化鋅奈米柱結構的光電特性與其應用。依不同摻雜金屬,本論文可分為兩部份。第一部份為探討銦摻雜於氧化鋅奈米柱之成長、其元件製做及量測,第二部份則研究鎵摻雜於氧化鋅奈米柱之成長、其元件製做及量測。
首先,我們利用水熱法成長銦摻雜的氧化鋅奈米柱,經由電子顯微鏡(SEM)及電子穿透顯微鏡(TEM)結果指出,所成長出的氧化鋅奈米柱呈現六角纖鋅鑛晶體結構。再由能量色散X-射線光譜儀測出銦元素,證明了成功將銦摻雜於氧化鋅奈米柱中。基於此成長方法,我們製做了光檢測器、溼度感測器及場發元件。光檢測器元件方面,我們發現不同偏壓操作下,其臨界波長均為390nm。在1V的偏壓下,紫外光-可見光抑制比達到兩個數量級之多,另其雜訊等效功率(noise equivalent power)和光檢測度(detectivity)分別為1.42×10−10 W 及 1.44×1011cmHz0.5W−1。濕度感測方面,暗電流會隨著環境溼度增加而增加,暗電流在RH30度時為7.82*10-6A,但當溼度增加到RH70時,暗電流為6.045*10-4A。場發元件方面,經量測發現,其臨界電壓為0.8V/um且場發射因子β為9818.
再來我們研究鎵摻雜於氧化鋅奈米柱之光電特性及場發特性。經由X-射線光電子光譜儀(XPS)分析,Ga 2p3的束縛能為1118.1eV,證明了鎵元素的成功加入氧化鋅奈米柱中。我們製做了場發元件,並發現其臨界電壓為3.6V/um 且場發射因子β為9058.
In this study, we report the different metal doped-on ZnO nanorods and its applications. This dissertation is divided by two parts due to different metal doped. First, we study the growth of indium doped in ZnO nanorods, the fabrication of its application devices and analyze it. And then, gallium doped ZnO nanorods-based devces are investigated.
In the beginning of the dissertation, we synthesize indium doped ZnO nanorods using hydrothermal method and fabricate MSM UV photodetector, humidity sensor and field emitter. The field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) results indicate that the nanorods exhibited single crystal with hexagonal wurtizite structure. Moreover, the energy dispersive X-ray spectroscopy result shows that the indium was successfully doped in ZnO nanorods. It was found that the cut-off frequency was 390nm while biased different voltage at UV photodetector. When biased at 1V, the UV-to-visible rejection ratio of the PD was approximately 109. For a given bandwidth of 1 kHz and biased of 1V, the results showed that the noise equivalent power (NEP) and detectivity(D*) were 1.42 ×10−10 W and 1.44 ×1011 cm•Hz0.5•W−1. While measuring their humidity properties, it was found that the current is about 7.82*10-6 A at RH30 increased to 6.045*10-4 A at RH70 under without UV illumination. The threshold voltage of fabricated field emitter was 0.8V/um and field enhancement factor β was 9818.
And then, we investigate the optoelectrical properties of the gallium doped ZnO nanorods and field emission properties. The X-ray photoelectron spectroscopy (XPS) results of the nanorods showed that the binding energy of the Ga 2p3 is 1118.1eV. It indicates that O-Ga bond was indeed incorporated into these nanorods. Field emitter was fabricated on glass substrate and using gallium doped ZnO nanorods. It was found that the threshold voltage and field enhancement factor β are 3.6V/um and 9058 respectively.
Chapter 1
[1] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys, vol.72, pp.126501-126530, 2009.
[2] Ü . Ö zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys, vol. 98, pp. 041301-1-041301-103, 2005.
[3] H. Karzel, W. Potzel, M. K. offerlein, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, D.W. Mitchell, T.P. Das, P. Blaha, K. Schwarz and M.P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B: Cond Matter, vol. 53, pp.11425-11438, 1996.
[4] E. Kisi and M.M. Elcombe, “U parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction,” Acta. Crystallogr. Sect. C: Cryst. Struct. Commu, vol. 45, pp. 1867-1870, 1989.
[5] M. Catti, Y. Noel and Dovesi, “Full Piezoelectric Ten sors of Wurtzite and Zinc Blende ZnO and ZnS by First-Principles Calculations,” R. J. Phys. Chem. Solids, vol. 64, pp. 2183-2190, 2003.
[6] S.J. Pearton, D.P Norton, K. Ip, Y.W. Heo and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci, vol. 50, pp. 293-340, 2009.
[7] J. J. Cole, X. Wang, R. J. Knuesel and H. O. Jacobs, “Integration of ZnO Microcrystals with Tailored Dimensions Forming Light Emitting Diodes and UV Photovoltaic Cells,” Nano Lett, vol. 8, pp. 1477-1481, 2008.
[8] A. Tsukazaki, A. Ohtomo, T. Onuma, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater, vol. 4, pp. 42-46, 2005.
[9] H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai and W. F. Hsieh, “Formation of Branched ZnO nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications,” J. Phys. Chem. C, vol.112(42), pp.16359-16364, 2008.
[10] C. C. Hsiao, K. Y. Huang and Y. C. Hu, “Fabrication of a ZnO Pyroelectric Sensor,” Sensors (Basel), vol.8(1), pp. 185-192, 2008.
[11] S. Ju, K. Lee, M.-H. Yoon, A. Facchetti, T. J. Marks and D. B.Janes, “High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: Effects of metal contacts and ozone treat- ment,” Nanotechnology, vol. 18, pp. 155201-1–155201-7, 2007.
[12] Z. L. Wang and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, vol. 312, pp. 242-246, 2006.
[13] K. S. Yeong and J. T. L. Thong, “Field emission properties of individual zinc oxide nanowire field emitter,” J. Vac. Sci. Technol. B, vol. 26, pp. 983-989, 2008.
[14] Z. M. Liao, J. Xu, J. M. Zhang and D. P. Yu, “Photovoltaic effect and charge storage in single ZnO nanowires,” Appl. Phys. Lett, vol. 93, pp. 023111-1–023111-3, 2008.
[15] C. Y. L, S. P. Chang, S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. Z. Chiou, and I. C. Chen, “ZnO Nanowire-Based Oxygen Gas Sensor,” IEEE Sens. J., vol. 9, pp. 485-489, 2009.
[16] V. Ischenko, S. Polarz, D. Grote, V.Stavarache, K. Fink, and M. Driess, “Zinc Oxide Nanoparticles with Defects,” Adv. Funct. Mater. vol. 15, pp. 1945-1954, 2005.
[17] Y. Ding and Z. L. Wang, “Structures of planar defects in ZnO nanobelts and nanowires,” Micron, vol. 40, pp. 335-342, 2009.
[18] J. Wollenstein, J. A. Plaza, C. Cane, Y. Min, H. Bottner and H. L. Tuller, “A novel single chip thin film metal oxide array,” Sens. Actuators B, vol. 93, pp. 350-355, 2003.
[19] D. R. Patil and L. A. Patil, “Room temperature chlorine gas sensing using surface modified ZnO thick film resistors,” Sensor. Actuat. B-Chem, vol. 123, pp. 546-553, 2007.
[20] P. Mitra, A. P. Chatterjee and H. S. Maiti, “ZnO thin film sensor,” Mater. Lett, vol. 35, pp. 33-38, 1998.
[21] C. L. Clement, R. T. Zaera, M.A. Ryan, A. Katty and G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojuctions,” Adv. Mater, vol. 17, pp. 1512-1515, 2005.
[22] J. P. Liu, X. T. Huang, Y. Y. Li, J. X. Duan and H. H. Ai, “Large-scale synthesis of flower-like ZnO structures by a surfactant-free and low-temperature process,” Mater. Chem. Phys., vol. 98, pp. 523-527, 2006.
[23] C. Li, G. J. Fang, N. H. Liu, Y. Y. Ren, H. M. Huang and X. Z. Zhao, “Snowflake-like ZnO structures: Self-assembled growth and characterization,” Mater. Lett, vol. 62, pp. 1761-1764, 2008.
[24] M. J. Zheng, L. D. Zhang, G. H. Li and W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique,” Chem. Phys. Lett, vol. 363, pp. 123-128, 2002.
[25] J. J. Wu and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater., vol. 21, pp. 215-218, 2002.
[26] L.Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater, vol. 15, pp. 464-466, 2003.
[27] Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu and T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization,” J. Appl. Phys., vol. 84, pp. 3912-3918, 1998.
[28] S. T. Tan, B. J. Chen, X. W. Sun, and W. J. Fan, “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition,” J. Appl. Phys., vol. 98, pp. 013505-1–013505-5, 2005.
[29] M. G. Tsoutsouva, C. N. Panagopoulos, D. Papadimitriou, I. Fasaki and M. Kompitsas, “ZnO thin films prepared by pulsed laser deposition,” Mat. Sci. Eng. B-adv. vol. 176, pp.480-483, 2011.
[30] L. E. Greene , M. Law , J. Goldberger , F. Kim , J. C. Johnson , Y. F. Zhang , R. J. Saykally and P. D. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed., vol. 42, pp. 3031-3034, 2003.
[31] S. Xu, Y. Wei , M. Kirkham , J. Liu , W. Mai , D. Davidovic , R. L. Snyder and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc., vol. 130, pp. 14958-14959, 2008.
[32] K. S. Kim, H. Jeong, M. S. Jeong and G. Y. Jung, “Polymer-Templated Hydrothermal Growth of Vertically Aligned Single-Crystal ZnO Nanorods and Morphological Transformations Using Structural Polarity,” Adv. Funct. Mater. vol. 20, pp. 3055-3063, 2010.
[33] N. F. Cooray, K. Kushiya, A. Fujimaki, D. Okumura, M. Sato, M. Ooshita and O. Yamase, “Optimization of Al-doped ZnO window layers for large-area Cu(InGa)Se-2-based modules by RF/DC/DC multiple magnetron sputtering”, Japan. J. Appl. Phys, vol. 38, pp. 6213-6218, 1999.
[34] J. Blasco, F. Bartolome, L. M. Garcia and J. Garcia, “Extrinsic origin of ferromagnetism in doped ZnO”, J. Mater. Chem., vol. 16, pp. 2282-2288, 2006.
[35] S. Y. Bae, C. W. Na, J. H. Kang and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation”, J. Phys. Chem. B, vol. 109, pp. 2526-2531, 2005.
[36] T. Minami, H. Sonohara, T. Kakumu and S. Takata, “Highly Transparent and conductive Zn2In2O5 thin-films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys. Part 2, vol. 34, pp. L971-L974, 1995.
[37] V. Assuncao, et al., “Influence of the deposition pressure on the properties of transparent and conductive ZnO: Ga thin-film produced by RF sputtering at room temperature,”Thin Solid Films, vol. 427, pp. 401–405, 2003.
[38] Y. H.Wang, W. R. Besant, C. J.Simonson and W. Shang, “Application of humidity sensors and an interactive device,” Sensor. Actuat. B-Chem, vol. 115, pp. 93-101, 2006.
[39] N. Yamazoe and Y. Shimizu, “Humidity sensors: Principles and applications,” Sensor. Actuator, vol. 10, pp. 379-398, 1986.
[40] T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino and S. Fujita, “Flame Detection by a β-Ga2O3-Based Sensor,” Jpn. J. Appl. Phys, vol. 48, pp. 011605-1–011605-7, 2009.
[41] V.W.S. Chan, “Optical space communications,” IEEE J. Sel. Top. Quant, vol. 6, pp. 959-975, 2000.
Chapter 2
[1] L.Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater, vol 15, pp. 464-466, 2003.
[2] P. R. Berger, “Metal-semiconductor-metal photodetector,” Proc. SPIE, vol. 4285, pp. 198-207, 2001.
[3] D. Decoster and J. Harari, “Optoelectronic sensors,” London, NJ:Wiley, 2009.
[4] H. Farahani, R. Wagiran and M. N. Hamidon, “Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review,” Sensors, vol. 14, pp.7881-7939, 2014.
[5] J.M. Bao, I. Shalish, Z. H. Su,R. Gurwitz, F. Capasso, X. W. Wang and Z. F. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires”, Nano. Res. Lett, vol. 6, pp. 404-1–404-7, 2011.
[6] Y. B. Li, F. D. Valle and M. Simonnet, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires”, Appl. Phys. Lett, vol. 94, pp. 023110-1–023110-3, 2009.
[7] R. Stratton, “Theory of Field Emission from Semiconductors,” Phys. Rev. vol. 125, pp. 67-82, 1962.
[8] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electricfields,”Proc. Royal Soc. London Ser. A, Contain. Papers Math. Phys. Character, vol. 119, pp. 173-181, 1928.
[9] B. Heying, X.H Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, “Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett, vol. 68, pp. 643-645, 1996.
[10] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,” Appl. Phys. Lett, vol. 86, pp. 043108-1–043108-3, 2005.
[11] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers,” Appl. Phys. Lett, vol.77, pp.2557-2559, 2000.
[12] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys, vol. 79, pp. 7433–7473, 1996.
[13] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett, vol. 7, pp. 1003–1009, 2007.
Chapter 3
[1] Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, Xi Wang and D. J. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology, vol. 20, pp. 155707-1–155707-6, 2009.
[2] D. C. Look, B. Claflin, Y. I. Alivov, and S. J. Park, “The future of ZnO light emitters,” Phys. Status Solidi A, vol. 201, pp.2203–2212, 2004.
[3] A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,”Nano Lett., vol. 17, pp. 2183–2187, 2007.
[4] T. J. Hsueh, C. L. Hsu, S. J. Chang and I. C. Chen, “Laterallygrown ZnO nanowire ethanol gas sensors,”Sens. Actuators B, Chem., vol. 126, pp.473–477, 2007.
[5] R. Tena-Zaera, J. Elias, G. Wang, and C. Levy-Clement, “Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O-2 reduction,” J. Phys. Chem. C, vol. 111, pp. 16706–16711, 2007.
[6] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee1, O. K. Tan and L Vayssieres., “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology, vol. 17, pp. 4995–4998, 2006.
[7] B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu and D. L. Wang., “Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition,” Nano Lett., vol. 7, pp. 323–328, 2007.
[8] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003–1009, 2007.
[9] S. S. Shinde and K. Y. Rajpure, “High-performance UV detector based on Ga-doped zinc oxide thin films,” Appl. Surf. Sci., vol. 257, pp. 9595–9599, 2011.
[10] N. F. Cooray, K. Kushiya, A. Fujimaki, D. Okumura, M. Sato, M. Ooshita and O. Yamase, “Optimization of Al-doped ZnO window layers for large-area Cu(InGa)Se-2-based modules by RF/DC/DC multiple magnetron sputtering”, Japan. J. Appl. Phys., vol. 38, pp. 6213-6218, 1999.
[11] J. Blasco, F. Bartolome, L. M. Garcia and J. Garcia, “Extrinsic origin of ferromagnetism in doped ZnO”, J. Mater. Chem., vol. 16, pp. 2282-2288, 2006.
[12] S. Y. Bae, C. W. Na, J. H. Kang and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation”, J. Phys. Chem. B, vol. 109, pp.2526-2531, 2005.
[13] T. Minami, H. Sonohara, T. Kakumu and S. Takata, “Highly Transparent and conductive Zn2In2O5 thin-films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys. Part 2, vol. 34, pp. L971-L974, 1995.
[14] L.Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater, vol. 15, pp. 464-466, 2003.
[15] Y. N. He, W. Zhang, S. C. Zhang, X. Kang, W. B. Peng, and Y. L. Xu, “Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array,” Sens. Actuators, A, vol. 181, pp. 6-12, 2012.
[16] Z. M. Bai, X. Q. Yan, X. Chen, H. S. Liu, Y. W. Shen, and Y. Zhang, “ZnO nanowire array ultraviolet photodetectors with self-powered properties,” Current Appl. Phys, vol. 13, pp. 165-169, 2013.
[17] [M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys, vol. 79, pp. 7433–7473, 1996.
[18] A. Bera and D. Basak, “Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-onedimensional ZnO nanowires,” Appl. Phys. Lett, vol. 93, pp. 053102-1–053102-3, 2008.
[19] T. Li, et al., “Solar-blind AlxGa1−xN-based metal-semiconductor metal ultraviolet photodetectors,” Electron. Lett., vol. 36, pp. 1581–1583, 2000.
[20] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair MgxNy–GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, pp. 916–921, 2008.
[21] S. M Peng, Y. K. Su, L. W. Ji, S. J. Young, C. N. Tsai, J. H. Hong, Z. S. Chen and C. Z. Wu, “Transparent ZnO Nanowire-Network Ultraviolet Photosensor,” IEEE. T. Transation. Dev., vol. 58, pp.2036-2040, 2011.
[22] S. J. Young, L. W. Ji, S. J. chang, and Y. K. Su, “ZnO metal-semiconductor-metal ultraviolet sensors with various contact electrodes,” J. Cryst. Growth, vol. 293, pp.43-47, 2006.
[23] W. Y. Weng, S. J. Chang, C. L. Hsu, T. J Hsueh and S. P. Chang, “A Lateral ZnO Nanowire Photodetector Prepared on Glass Substrate,” J. Electrochem. Soc, vol. 157, pp. K30-K33, 2010.
[24] C. C. Yang, Y. K. Su, C. H. Hsiao, T. H. Kao, Y. M. Peng, M. Y. Chuang, B. C. Wang and S. L. Wu, “Low-Frequency Noise Characteristics of Gallium-Doped ZnO Nanosheets as Photodetectors,” J. Electrochem. Soc, vol. 161, pp. H399-H403, 2014.
[25] S. P. Chang, C. Y. Lu, S. J. Chang, Y. Z. Chiou, T. J. Hsueh and C. L. Hsu, “Electrical and Optical Characteristics of UV Photodetector With Interlaced ZnO Nanowires,” IEEE J. Sel. Top. Quantum Electron, vol. 17, pp. 990-995, 2011.
[26] S. J. Chang ; C. W. Liu, C. H. Hsiao, K. Y. Lo, S. J. Young, T. H. Kao, K. S. Tsai and S. L. Wu, “Noise Properties of Fe-ZnO Nanorod Ultraviolet Photodetectors,” IEEE Photonics Technol. Lett, vol. 25, pp. 2089 -2092, 2013.
[27] S. J. Young, Y. H. Liu, C. H. Hsiao, S. J. Chang, B. C. Wang, T. H. Kao, K. S. Tsai and S. L. Wu, “ZnO-Based Ultraviolet Photodetectors With Novel Nanosheet Structures,” IEEE Trans. Nanotechnol, vol. 13, pp. 238-244, 2014.
[28] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura and Y. Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films”, Jpn. J. Appl. Phys. vol. 33, pp. 6611-6615, 1994.
[29] J. M. Bao, I. Shalish, Z. H. Su, R. Gurwitz, F. D Capasso, X. W. Wang and Z. F. Ren, “Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires”, Nanoscale. Res. Lett, vol. 6, pp. 404-1–404-7, 2011.
[30] Y. B. Li, F. Della Valle, M. Simonnet, I. Yamada and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires”, Appl. Phys. Lett, vol. 94, pp. 023110-1–023110-3, 2009.
Chapter 4
[1] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, pp. 512-514, 1999.
[2] G. Z. Yang, H. Cui, Y. Sun, L. Gong, J. Chen, D. Jiang, and C. X. Wang, “Simple Catalyst-Free Method to the Synthesis of beta-SiC Nanowires and Their Field Emission Properties,” J. Phys. Chem. C, vol. 113, pp. 15969-15973, 2009
[3] T. Yamashita, S. Hasegawa, S. Nishida, M. Ishimaru, Y. Hirotsu, and H. Asahi, “Electron field emission from GaN nanorod films grown on Si substrates with native silicon oxides,” Appl. Phys. Lett., vol. 86, pp. 082109-1–082109-3, 2005.
[4] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, “Morphological effects on the field emission of ZnO nanorod arrays,” Appl. Phys. Lett., vol. 86, pp. 203115-1–203115-3, 2005.
[5] O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, A. N. Gruzintsev, and A. N. Redkin, “Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature,” Sens. Actuators B, vol. 144, pp. 56-66, 2010.
[6] J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,” Nanatechnol., vol. 17, pp. S304-S312, 2006
[7] O. Lupan, T. Pauporte, B. Viana, I. M. Tiginyanu, V. V. Ursaki, and R. Cortes, “Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication,” ACS Appl. Mate. Interfaces, vol. 2, pp. 2083-2090, 2010.
[8] P. X. Gao, Y. Ding, and I. L. Wang, “Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst,” Nano Lett., vol. 3, pp. 1315-1320, 2003.
[9] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of Zno from Aqueous Solutions,” Adv. Mater., vol.15, pp. 464-466, 2003.
[10] B. J. Lin, S. lm, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films., vol. 366, pp. 107-110, 2000.
[11] B. Illy, B. A. Shollock, J. L. MacManus-Driscoll, and M. P. Ryan, “Electrochemical growth of ZnO nanoplates”, Nanatechnol, vol. 16, pp. 320-324, 2005.
[12] G. T. Kim, U. Waizmann, and S. Roth, “Simple efficient coordinate markers for investigating synthetic nanofibers,” Appl. Phys. Lett., vol. 79, pp. 3497-3499, 2001.
[13] N. F. Cooray, K. Kushiya, A. Fujimaki, D. Okumura, M. Sato, M. Ooshita, and O. Yamase, “Optimization of Al-doped ZnO window layers for large-area Cu(InGa)Se-2-based modules by RF/DC/DC multiple magnetron sputtering,” Japan. J. Appl. Phys., vol. 38, pp. 6213-6218, 1999.
[14] J. Blasco, F. Bartolome, L. M. Garcia, and J. Garcia, “Extrinsic origin of ferromagnetism in doped ZnO,” J. Mater. Chem., vol. 16, pp. 2282-2288, 2006.
[15] S. Y. Bae, C. W. Na, J. H. Kang and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B, vol. 109, pp. 2526-2531, 2005.
[16] T. Minami, H. Sonohara, T. Kakumu, and S. Takata, “Highly Transparent and conductive Zn2In2O5 thin-films prepared by RF magnetron sputtering,” Jpn. J. Appl. Phys. Part 2, vol. 34, pp. L971-L974, 1995.
[17] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanatechnol, vol. 18, pp. 115603-1-115603-7, 2007.
[18] M. Ahmad, H. Y. Sun, and J. Zhu, “Enhanced Photoluminescence and Field-Emission Behavior of Vertically Well Aligned Arrays of In-Doped ZnO Nanowires,” ACS Appl. Mater. Interfaces, vol. 3, pp. 1299-1305, 2011.
[19] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater Sci., vol. 50, pp. 293-340, 2005.
[20] L. H Quang, L. S Kuan, and Gregory G. K Liang, “Structural and electrical properties of single crystal indium doped ZnO films synthesized by low temperature solution method,” J. Cryst. Growth, vol. 312, pp. 437-442, 2010.
[21] A. B. Djurisic, and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small, vol. 2, pp. 944-961, 2006.
[22] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, pp. 7983-7990, 1996.
[23] N. F. Mott, “Metal-Insulator Transitions, Taylor and Francis, London,” Cryst. Res. Technol., vol. 10, pp. K57-K58, 1975.
[24] J. S. Jie, G. Z. Wang, X. H. Han, Q. X. Yu, Y. Liao, G. P. Li, and J. G Hou, “Indium doped zinc oxide nanobelts,” Chem. Phys. Lett., vol. 387, pp. 466-470, 2004.
[25] K. J. Kim, and Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO,” Appl. Phys. Lett., vol. 78, pp. 475-477, 2001.
[26] X. Liu, X. H. Wu, H. Cao, and RPH. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys., vol. 95, pp. 3141-4147, 2004.
[27] D. C. Reynolds, D. C. Look, B. Jogai, and H. Morkoc, “Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN,” Solid State Commun, vol. 101, pp. 643-646, 1997.
[28] N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell, “Role of copper in the green luminescence from ZnO crystals,” Appl. Phys. Lett., vol. 81, pp. 622-624, 2002.
[29] C. Liu, H. P. He, L. W. Sun, Q. Yang, Z. Z. Ye, and L. L. Chen, “Acceptor-related emissions in indium-doped ZnO nanorods,” J. Appl. Phys., vol. 109, pp. 053507-1-053507-4, 2011.
[30] R. H. Fowler, and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, Ser. A, vol. 119, pp. 173-181, 1928.
[31] X. D. Bai, E. G. Wang, P. X. Gao, and Z. L. Wang, “Measuring the work function at a nanobelt tip and at a nanoparticle surface,” Nano Lett., vol. 3, pp. 1147-1150, 2003.
[32] Y. H. Huang, Y. Zhang, L. Liu, S. S. Fan, Y. Wei, and J. He, “Controlled Synthesis and Field Emission Properties of ZnO Nanostructures with Different Morphologies,” J. Nanosci. Nanotechnol, vol. 6 pp.787-790, 2006.
Chapter 5
[1] W. A. Deheer, A. Chatelain, and D. Ugarte, “A carbon nanotube fieldemission electron source,” Science, vol. 270, pp. 1179–1180, 1995.
[2] M. Ahmad and J. Zhu, “ZnO based advanced functional nanostructures: Synthesis, properties and applications,”J. Mater. Chem., vol. 21, pp. 599–614, 2011.
[3] Y. B. Guo, H. B. Liu, Y. J. Li, G. X. Li, Y. J. Zhao, Y. L. Song and Y. L. Li, “Controlled core–shell structure for efficiently enhancing field-emission properties of organic–inorganic hybrid nanorods,” J. Phys. Chem. C, vol. 113, pp. 12669–12673, 2011.
[4] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, “Morphological effects on the field emission of ZnO nanorod arrays,” Appl. Phys. Lett, vol. 86, pp. 203115-1–1203115-3, 2005.
[5] N. de Jonge, M. Allioux, M. Doytcheva and M. Kaiser, “Characterization of the field emission properties of individual thin carbon nanotubes,” Appl. Phys. Lett., vol. 85, pp. 1607-1–1607-3, 2004.
[6] Y. Saito, Y. Tsujimoto, A. Koshio, and F. Kokai, “Field emission patterns from multiwall carbon nanotubes with a cone-shaped tip,” Appl. Phys. Lett., vol. 90, pp. 213108-1–213018-3, 2007.
[7] S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, “Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation,” J. Phys. Chem. B, vol. 109, pp. 2526–2531, 2005.
[8] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa and R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO: Ga thin-film produced by RF sputtering at room temperature,”Thin Solid Films, vol. 427, pp. 401–405, 2003.
[9] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, pp. 463–466, 2003.
[10] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si inaqueous solution: Growth mechanism and structural and optical properties,” Nanatechnology, vol. 18, 115603-1–115603-7, 2007.
[11] Z. Q. Li, Y. J. Xiong, and Y. Xie, “Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route,” Inorganic Chem, vol. 42, pp. 8105–8109, 2003.
[12] S. K. Lim, S. H. Hong, S. H. Hwang, S. Kim, and H. Park, “Characterization of Ga-doped ZnO nanorods synthesized via microemulsion method,” J. Mater. Sci. Technol., vol. 29, pp. 39–43, 2013.
[13] Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Micli, and H. W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition,” J. Appl. Phys, vol. 88, pp. 201–204, 2000.
[14] J. M. Wu, Y. R. Chen, and Y. H. Lin, “Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector,” Nanoscale, vol. 3, pp. 1053–1058, 2011.
[15] K. Thirunavukkarasu and R. Jothiramalingam, “Synthesis and structural characterization of Ga-ZnO nanodisk/nanorods formation by polymer assisted hydrothermal process,” Powder Technol., vol. 239, pp. 308–313, 2013.
[16] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electricfields,”Proc. Royal Soc. London Ser. A, Contain. Papers Math. Phys. Character, vol. 119, pp. 173–181, 1928.
[17] X. D. Bai, E. G. Wang, P. X. Gao, and Z. L. Wang, “Measuring the work function at a nanobelt tip and at a nanoparticle surface,”Nano Lett., vol. 3, pp. 1147–1150, 2003.