| 研究生: |
張景翔 Chang, Ching-Hsiang |
|---|---|
| 論文名稱: |
氧化亞銅有無摻銻應用於電阻式記憶體之研究 A study of antimony doping in cuprous oxide on the application to resistive random access memory |
| 指導教授: |
彭洞清
Perng, Dung-Chimg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 氧化亞銅 、銻摻雜 、電阻式 、記憶體 |
| 外文關鍵詞: | Cu2O, Sb doping, Resistive, Memory |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是研究氧化亞銅有無摻銻應用於電阻式記憶體之比較。由材料分析之結果觀察出,氧化亞銅摻銻(Cu2O:Sb)相較於無摻雜之氧化亞銅(u-Cu2O),可以改善薄膜均勻度、表面粗糙度,且晶粒(Grain size)較小並具有更緻密的晶界(Grain boundry)。氧化亞銅1000 nm厚電性分析結果觀察出,摻銻(Cu2O:Sb)相較於無摻雜之氧化亞銅(u-Cu2O),Forming電壓(Vforming)分別為7V與14V;Set電壓(Vset)分別為 2V ~ 4V 與 1.5V ~ 11V ;Reset電壓(Vreset)分別為 -1.5V ~ -1.7V與 -1.5V ~ -2V ;由電壓電流曲線(I-V)觀察出有無摻銻試片之高低電阻態電阻值比(HRS/LRS)皆約為2個數量級;Cu2O(700 nm)厚其耐久度(Endurance)之震盪幅度,HRS最低值與LRS最高值之比值皆在1個order以上,摻銻與否無明顯差異,但1000 nm厚無摻銻u-Cu2O RRAM,HRS最低值與LRS最高值之比值僅為2,記憶保存力(Retention)有無摻銻皆可維持原阻態特性至少5000秒。導通機制有無摻銻均相同,在HRS時,小順偏為歐姆導通(Ohmic conduction),偏壓至1.5V以上時,電流為空間電荷有限電流(Space Charge Limited Current,SCLC);導絲形成在LRS時為歐姆導通。優化後的氧化亞銅薄膜應該很有潛力可以應用於電阻式記憶體。
Cu2O :Sb improves film’s uniformity, surface roughness, and has a smaller grain size as compared to that of u-Cu2O film.The range of V(set) for Cu2O :Sb is more stable than u-Cu2O.Cu2O:Sb can reduce power consumption and has lower forming voltage or it could be a forming free film for RRAM.Whether Sb doping or not, their conduction mechanism is the same. Data retention is stable as we tested for 5000 sec.
[1] Baek, S. K., Kwon, Y. H., Shin, J. H., Lee, H. S., & Cho, H. K. (2015). Low‐Temperature Processable High‐Performance Electrochemically Deposited p‐Type Cuprous Oxides Achieved by Incorporating a Small Amount of Antimony. Advanced Functional Materials, 25(32), 5214-5221.
[2] Bersuker, G., Gilmer, D. C., Veksler, D., Yum, J., Park, H., Lian, S., ... & Shluger, A. (2010, December). Metal oxide RRAM switching mechanism based on conductive filament microscopic properties. In Electron Devices Meeting (IEDM), 2010 IEEE International (pp. 19-6). IEEE.
[3] Son, J. Y., & Shin, Y. H. (2008). Direct observation of conducting filaments on resistive switching of NiO thin films. Applied Physics Letters, 92(22), 222106.
[4] Baek, I. G., Lee, M. S., Seo, S., Lee, M. J., Seo, D. H., Suh, D. S., ... & Chung, U. I. (2004, December). Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International (pp. 587-590). IEEE.
[5] Huang, T. H., Yang, P. K., Lien, D. H., Kang, C. F., Tsai, M. L., Chueh, Y. L., & He, J. H. (2014). Resistive memory for harsh electronics: immunity to surface effect and high corrosion resistance via surface modification. Scientific Reports, 4, 4402.
[6] Kamm, K. E., & Stull, J. T. (1985). The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annual Review of Pharmacology and Toxicology, 25(1), 593-620.
[7] Schindler, C., Thermadam, S. C. P., Waser, R., & Kozicki, M. N. (2007). Bipolar and Unipolar Resistive Switching in Cu-Doped $hbox {SiO} _ {2} $. IEEE Transactions on Electron Devices, 54(10), 2762-2768.
[8] Kyhse-Andersen, J. (1984). Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polycrylamide to nitrocellulose. Journal of Biochemical and Biophysical Methods, 10(3-4), 203-209..
[9] Li, X., Cai, W., Colombo, L., & Ruoff, R. S. (2009). Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters, 9(12), 4268-4272.
[10] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314.
[11] Emtage, P. R., & Tantraporn, W. (1962). Schottky emission through thin insulating films. Physical Review Letters, 8(7), 267.
[12] Miyazaki, T., & Tezuka, N. (1995). Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. Journal of Magnetism and Magnetic Materials, 139(3), L231-L234.
[13] Simmons, J. G. (1967). Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems. Physical Review, 155(3), 657.
[14] Sidebottom, D. L., Roling, B., & Funke, K. (2000). Ionic conduction in solids: Comparing conductivity and modulus representations with regard to scaling properties. Physical Review B, 63(2), 024301.
[15] Rose, A. (1955). Space-charge-limited currents in solids. Physical Review, 97(6), 1538.
[16] Nagasubramanian, G., Distefano, S., & Moacanin, J. (1993). U.S. Patent No. 5,272,359. Washington, DC: U.S. Patent and Trademark Office..
[17] Cao, X., Li, X., Gao, X., Yu, W., Liu, X., Zhang, Y., ... & Cheng, X. (2009). Forming-free colossal resistive switching effect in rare-earth-oxide Gd 2 O 3 films for memristor applications. Journal of Applied Physics, 106(7), 073723.
[18] Chen, Y. Y., Goux, L., Clima, S., Govoreanu, B., Degraeve, R., Kar, G. S., ... & Jurczak, M. (2013). Endurance/Retention Trade-off on $hbox {HfO} _ {2}/hbox {Metal} $ Cap 1T1R Bipolar RRAM. IEEE Transactions on electron devices, 60(3), 1114-1121.
[19] Kim, Y. B., Lee, S. R., Lee, D., Lee, C. B., Chang, M., Hur, J. H., ... & Yoo, I. K. (2011, June). Bi-layered RRAM with unlimited endurance and extremely uniform switching. In VLSI Technology (VLSIT), 2011 Symposium on (pp. 52-53). IEEE.
[20] Zhuang, W. W., Pan, W., Ulrich, B. D., Lee, J. J., Stecker, L., Burmaster, A., ... & Inoue, K. (2002, December). Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). In Electron Devices Meeting, 2002. IEDM'02. International (pp. 193-196). IEEE.
[21] Russo, U., Ielmini, D., Cagli, C., & Lacaita, A. L. (2009). Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Transactions on Electron Devices, 56(2), 186-192.
[22] Wong, H. S. P., Lee, H. Y., Yu, S., Chen, Y. S., Wu, Y., Chen, P. S., ... & Tsai, M. J. (2012). Metal–oxide RRAM. Proceedings of the IEEE, 100(6), 1951-1970.ull, J. T. (1985). The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annual Review of Pharmacology and Toxicology, 25(1), 593-620.
[23] Essakhi, S., Mugnai, L., Crous, P. W., Groenewald, J. Z., & Surico, G. (2008). Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from esca diseased grapevines. Persoonia: Molecular Phylogeny and Evolution of Fungi, 21, 119.
[24] Gilmer, D. C., Bersuker, G., Park, H. Y., Park, C., Butcher, B., Wang, W., ... & Jammy, R. (2011, May). Effects of RRAM stack configuration on forming voltage and current overshoot. In Memory Workshop (IMW), 2011 3rd IEEE International (pp. 1-4). IEEE.
[25] Park, J. C., Kim, J., Kwon, H., & Song, H. (2009). Gram‐scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium‐ion battery anode materials. Advanced Materials, 21(7), 803-807.
[26] Chen, J. W., Perng, D. C., & Fang, J. F. (2011). Nano-structured Cu2O solar cells fabricated on sparse ZnO nanorods. Solar Energy Materials and Solar Cells, 95(8), 2471-2477.
[27] Park, K., & Lee, J. S. (2016). Controlled synthesis of Ni/CuO x/Ni nanowires by electrochemical deposition with self-compliance bipolar resistive switching. Scientific reports, 6, 23069.
[28] Kim, W., Park, S. I., Zhang, Z., Yang-Liauw, Y., Sekar, D., Wong, H. S. P., & Wong, S. S. (2011, June). Forming-free nitrogen-doped AlO X RRAM with sub-μA programming current. In VLSI Technology (VLSIT), 2011 Symposium on (pp. 22-23). IEEE.
[29] Chen, Y. S., Wu, T. Y., Tzeng, P. J., Chen, P. S., Lee, H. Y., Lin, C. H., ... & Tsai, M. J. (2009, April). Forming-free HfO 2 bipolar RRAM device with improved endurance and high speed operation. In VLSI Technology, Systems, and Applications, 2009. VLSI-TSA'09. International Symposium on (pp. 37-38). IEEE.
[30] Sun, Y., Yan, X., Zheng, X., Liu, Y., Zhao, Y., Shen, Y., ... & Zhang, Y. (2015). High on–off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing. ACS appliedmaterials & interfaces, 7(13), 7382-7388.
校內:2023-06-30公開