簡易檢索 / 詳目顯示

研究生: 張景翔
Chang, Ching-Hsiang
論文名稱: 氧化亞銅有無摻銻應用於電阻式記憶體之研究
A study of antimony doping in cuprous oxide on the application to resistive random access memory
指導教授: 彭洞清
Perng, Dung-Chimg
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化亞銅銻摻雜電阻式記憶體
外文關鍵詞: Cu2O, Sb doping, Resistive, Memory
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是研究氧化亞銅有無摻銻應用於電阻式記憶體之比較。由材料分析之結果觀察出,氧化亞銅摻銻(Cu2O:Sb)相較於無摻雜之氧化亞銅(u-Cu2O),可以改善薄膜均勻度、表面粗糙度,且晶粒(Grain size)較小並具有更緻密的晶界(Grain boundry)。氧化亞銅1000 nm厚電性分析結果觀察出,摻銻(Cu2O:Sb)相較於無摻雜之氧化亞銅(u-Cu2O),Forming電壓(Vforming)分別為7V與14V;Set電壓(Vset)分別為 2V ~ 4V 與 1.5V ~ 11V ;Reset電壓(Vreset)分別為 -1.5V ~ -1.7V與 -1.5V ~ -2V ;由電壓電流曲線(I-V)觀察出有無摻銻試片之高低電阻態電阻值比(HRS/LRS)皆約為2個數量級;Cu2O(700 nm)厚其耐久度(Endurance)之震盪幅度,HRS最低值與LRS最高值之比值皆在1個order以上,摻銻與否無明顯差異,但1000 nm厚無摻銻u-Cu2O RRAM,HRS最低值與LRS最高值之比值僅為2,記憶保存力(Retention)有無摻銻皆可維持原阻態特性至少5000秒。導通機制有無摻銻均相同,在HRS時,小順偏為歐姆導通(Ohmic conduction),偏壓至1.5V以上時,電流為空間電荷有限電流(Space Charge Limited Current,SCLC);導絲形成在LRS時為歐姆導通。優化後的氧化亞銅薄膜應該很有潛力可以應用於電阻式記憶體。

    Cu2O :Sb improves film’s uniformity, surface roughness, and has a smaller grain size as compared to that of u-Cu2O film.The range of V(set) for Cu2O :Sb is more stable than u-Cu2O.Cu2O:Sb can reduce power consumption and has lower forming voltage or it could be a forming free film for RRAM.Whether Sb doping or not, their conduction mechanism is the same. Data retention is stable as we tested for 5000 sec.

    中文摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 1 第一章 緒論 1 1-1 記憶體簡介 1 1-2 電阻式記憶體 2 1-3氧化亞銅(Cuprous Oxide)之特性 4 1-4研究動機 5 2 第二章 基礎理論 6 2-1 元件基礎理論 6 2-2燈絲理論(Filament Theory) 7 2-2-1 焦耳熱 7 2-2-2 陽離子傳導 7 2-2-2 陰離子傳導 7 2-3 傳導機制(Conduction mechanisms) 8 2-3-1 蕭基發射(Schottky emission)[11] 8 2-3-2 穿遂效應(Tunneling effect)[12] 10 2-3-3 普爾-法蘭克發射(Poole-Frenkel emission)[13] 12 2-3-4 歐姆傳導(Ohmic conduction) 14 2-3-5 離子電導(Ionic Conduction) [14] 15 2-3-6 空間電荷限制電流(SpaceChargeLimitCurrent,SCLC) 16 2-3-7 跳躍傳導(HoppingConduction)[16] 17 3 第三章 實驗方法 19 3-1 流程圖 19 3-2 水溶液合成與電化學沉積 20 3-2-1 基板清洗 20 3-2-2 調配氧化亞銅電鍍液與電化學沉積 21 3-2-3調配氧化亞銅摻銻電鍍液與電化學沉積 22 3-3 黃光微影 24 3-3-1 塗佈光阻 25 3-3-2軟烤 25 3-3-3曝光 25 3-3-4顯影 25 3-3-5硬烤 25 3-4 直流濺鍍系統 26 3-5 去光阻 26 3-6 製程設備介紹 27 3-6-1 電化學恆電位儀 27 3-6-2 旋轉塗佈機 29 3-6-3 定溫烤箱 30 3-6-4 曝光機 31 3-6-5 直流濺鍍系統 32 3-7 量測設備介紹 33 3-7-1 X光繞射光譜儀(XRD) 33 3-7-2 高解析掃描式電子顯微鏡(SEM) 34 3-7-3 化學分析電子光譜儀 35 3-7-4 半導體元件參數分析儀 36 4 第四章 結果與討論 37 4-1 氧化亞銅電阻式記憶體 37 4-2 材料分析 38 4-2-2 氧化亞銅薄膜測厚儀分析 40 4-2-2 氧化亞銅薄膜測厚儀分析 44 4-2-3 氧化亞銅X光繞射分析 45 4-2-4 氧化亞銅能量色散X-射線光譜(EDS)與化學分析電子光譜儀 (XPS)分析 46 4-3 電阻式記憶體電性分析 49 4-3-1 電壓電流轉換曲線 50 4-3-2 耐久度(Endurance) 53 4-3-3 記憶保存力(Retention) 56 4-3-4 Forming之比較 59 4-3-5 高低電阻之累積概率分佈圖(Cumulative probability) 63 4-3-6 操作電壓之累積概率分佈圖 66 4-4 機制探討 69 5 第五章 結論及未來研究方向 76 5-1 結論 76 5-2 未來研究方向 77 參考文獻 78

    [1] Baek, S. K., Kwon, Y. H., Shin, J. H., Lee, H. S., & Cho, H. K. (2015). Low‐Temperature Processable High‐Performance Electrochemically Deposited p‐Type Cuprous Oxides Achieved by Incorporating a Small Amount of Antimony. Advanced Functional Materials, 25(32), 5214-5221.
    [2] Bersuker, G., Gilmer, D. C., Veksler, D., Yum, J., Park, H., Lian, S., ... & Shluger, A. (2010, December). Metal oxide RRAM switching mechanism based on conductive filament microscopic properties. In Electron Devices Meeting (IEDM), 2010 IEEE International (pp. 19-6). IEEE.
    [3] Son, J. Y., & Shin, Y. H. (2008). Direct observation of conducting filaments on resistive switching of NiO thin films. Applied Physics Letters, 92(22), 222106.
    [4] Baek, I. G., Lee, M. S., Seo, S., Lee, M. J., Seo, D. H., Suh, D. S., ... & Chung, U. I. (2004, December). Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International (pp. 587-590). IEEE.
    [5] Huang, T. H., Yang, P. K., Lien, D. H., Kang, C. F., Tsai, M. L., Chueh, Y. L., & He, J. H. (2014). Resistive memory for harsh electronics: immunity to surface effect and high corrosion resistance via surface modification. Scientific Reports, 4, 4402.
    [6] Kamm, K. E., & Stull, J. T. (1985). The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annual Review of Pharmacology and Toxicology, 25(1), 593-620.
    [7] Schindler, C., Thermadam, S. C. P., Waser, R., & Kozicki, M. N. (2007). Bipolar and Unipolar Resistive Switching in Cu-Doped $hbox {SiO} _ {2} $. IEEE Transactions on Electron Devices, 54(10), 2762-2768.
    [8] Kyhse-Andersen, J. (1984). Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polycrylamide to nitrocellulose. Journal of Biochemical and Biophysical Methods, 10(3-4), 203-209..
    [9] Li, X., Cai, W., Colombo, L., & Ruoff, R. S. (2009). Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters, 9(12), 4268-4272.
    [10] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314.
    [11] Emtage, P. R., & Tantraporn, W. (1962). Schottky emission through thin insulating films. Physical Review Letters, 8(7), 267.
    [12] Miyazaki, T., & Tezuka, N. (1995). Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. Journal of Magnetism and Magnetic Materials, 139(3), L231-L234.
    [13] Simmons, J. G. (1967). Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems. Physical Review, 155(3), 657.
    [14] Sidebottom, D. L., Roling, B., & Funke, K. (2000). Ionic conduction in solids: Comparing conductivity and modulus representations with regard to scaling properties. Physical Review B, 63(2), 024301.
    [15] Rose, A. (1955). Space-charge-limited currents in solids. Physical Review, 97(6), 1538.
    [16] Nagasubramanian, G., Distefano, S., & Moacanin, J. (1993). U.S. Patent No. 5,272,359. Washington, DC: U.S. Patent and Trademark Office..
    [17] Cao, X., Li, X., Gao, X., Yu, W., Liu, X., Zhang, Y., ... & Cheng, X. (2009). Forming-free colossal resistive switching effect in rare-earth-oxide Gd 2 O 3 films for memristor applications. Journal of Applied Physics, 106(7), 073723.
    [18] Chen, Y. Y., Goux, L., Clima, S., Govoreanu, B., Degraeve, R., Kar, G. S., ... & Jurczak, M. (2013). Endurance/Retention Trade-off on $hbox {HfO} _ {2}/hbox {Metal} $ Cap 1T1R Bipolar RRAM. IEEE Transactions on electron devices, 60(3), 1114-1121.
    [19] Kim, Y. B., Lee, S. R., Lee, D., Lee, C. B., Chang, M., Hur, J. H., ... & Yoo, I. K. (2011, June). Bi-layered RRAM with unlimited endurance and extremely uniform switching. In VLSI Technology (VLSIT), 2011 Symposium on (pp. 52-53). IEEE.
    [20] Zhuang, W. W., Pan, W., Ulrich, B. D., Lee, J. J., Stecker, L., Burmaster, A., ... & Inoue, K. (2002, December). Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). In Electron Devices Meeting, 2002. IEDM'02. International (pp. 193-196). IEEE.
    [21] Russo, U., Ielmini, D., Cagli, C., & Lacaita, A. L. (2009). Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Transactions on Electron Devices, 56(2), 186-192.
    [22] Wong, H. S. P., Lee, H. Y., Yu, S., Chen, Y. S., Wu, Y., Chen, P. S., ... & Tsai, M. J. (2012). Metal–oxide RRAM. Proceedings of the IEEE, 100(6), 1951-1970.ull, J. T. (1985). The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annual Review of Pharmacology and Toxicology, 25(1), 593-620.
    [23] Essakhi, S., Mugnai, L., Crous, P. W., Groenewald, J. Z., & Surico, G. (2008). Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from esca diseased grapevines. Persoonia: Molecular Phylogeny and Evolution of Fungi, 21, 119.
    [24] Gilmer, D. C., Bersuker, G., Park, H. Y., Park, C., Butcher, B., Wang, W., ... & Jammy, R. (2011, May). Effects of RRAM stack configuration on forming voltage and current overshoot. In Memory Workshop (IMW), 2011 3rd IEEE International (pp. 1-4). IEEE.

    [25] Park, J. C., Kim, J., Kwon, H., & Song, H. (2009). Gram‐scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium‐ion battery anode materials. Advanced Materials, 21(7), 803-807.
    [26] Chen, J. W., Perng, D. C., & Fang, J. F. (2011). Nano-structured Cu2O solar cells fabricated on sparse ZnO nanorods. Solar Energy Materials and Solar Cells, 95(8), 2471-2477.
    [27] Park, K., & Lee, J. S. (2016). Controlled synthesis of Ni/CuO x/Ni nanowires by electrochemical deposition with self-compliance bipolar resistive switching. Scientific reports, 6, 23069.
    [28] Kim, W., Park, S. I., Zhang, Z., Yang-Liauw, Y., Sekar, D., Wong, H. S. P., & Wong, S. S. (2011, June). Forming-free nitrogen-doped AlO X RRAM with sub-μA programming current. In VLSI Technology (VLSIT), 2011 Symposium on (pp. 22-23). IEEE.
    [29] Chen, Y. S., Wu, T. Y., Tzeng, P. J., Chen, P. S., Lee, H. Y., Lin, C. H., ... & Tsai, M. J. (2009, April). Forming-free HfO 2 bipolar RRAM device with improved endurance and high speed operation. In VLSI Technology, Systems, and Applications, 2009. VLSI-TSA'09. International Symposium on (pp. 37-38). IEEE.
    [30] Sun, Y., Yan, X., Zheng, X., Liu, Y., Zhao, Y., Shen, Y., ... & Zhang, Y. (2015). High on–off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing. ACS appliedmaterials & interfaces, 7(13), 7382-7388.

    無法下載圖示 校內:2023-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE