| 研究生: |
何家稭 He, Jia-Jie |
|---|---|
| 論文名稱: |
輕質陶粒混凝土砌塊之機械性能及熱傳導行為與解析 Mechanical Properties and Thermal Conductivity Behaviour and Analysis of Lightweight Aggregate Concrete Masonry Block |
| 指導教授: |
葉玉祥
Yeh, Yu-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 輕質混凝土 、輕質骨材 、力學性能 、熱傳導係數 |
| 外文關鍵詞: | Lightweight concrete, lightweight aggregates, mechanical properties, thermal conductivity |
| 相關次數: | 點閱:41 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過抗壓強度及熱傳導係數來評估台灣製輕質陶粒混凝土砌塊之性能。比較了不同試驗齡期、配比和養護方式,對砌塊性能之影響程度,找出最佳化支配比條件。分析試驗數據,再以試驗數據生成性能預估公式。
試驗使用三種密度等級之陶粒,分別為300級、500級以及700級。試驗設計包含:五種配比,包含300級兩種(300-F40、300-F50)、500級兩種(500-F30、500-F60)以及700級一種(700-F50);兩種養護方式(浸泡養護、澆水濕治養護);兩種齡期(28天、365天)。試驗試體尺寸約為30 x 30 x 12(cm),以此尺寸作為抗壓試驗之試體;熱學試驗則將砌塊切割為5 x 5 x 4(cm),以瞬態法進行熱傳導係數測定。
力學性能試驗結果以抗壓強度、強重比、變異係數以及剛度等進行分析與比較。研究結果發現齡期對於不同密度等級砌塊產生不同影響,對於低密度等級推測因筒壓強度較低、乾縮等因素,使強度稍微下降;高密度等級則因原先吸水率不高,在充分養護後強度略微提升。試體浸泡於飽和氫氧化鈣水溶液養護,對於抗壓強度無明顯提升,但對於砌塊品質穩定度有明顯效果,在不同配比下皆可看到抗壓強度變異係數下降。
熱傳導試驗結果符合k值隨單位重呈現指數上升關係,而與陶粒密度等級關聯性較低。養護方式對k值具有明顯影響,浸泡養護組之k值皆較非浸泡養護組低,此現象可歸因於水泥漿在良好的養護條件下水化,使微小空細均勻分布於其中,進而提升隔熱性能。試驗中發現500-F30這組試體之k值明顯偏低,經多次重覆量測後確定其數值低於其餘試體,推測其因粒料組成關係良好、水化完整等因素因此具有較低之k值。本研究進一步以其餘四組試體之串聯熱阻、並聯熱阻、陶粒堆積密度等參數生成回歸公式,再將500-F30之數據帶入公式,亦得到相似之k值結果。交互驗證下,說明500-F30偏低之k值並非量測誤差。因此,此公式在預估台灣製全輕質無沙陶粒混凝土之熱傳導係數上應具有相當之準確性,可作為設計時的參考。
本研究針對新型輕質陶粒混凝土砌塊製程進行優化。透過不同試驗條件及試驗對像,分析力學及熱學性能,並發展預估公式。增進對輕質陶粒混凝土性能的理解,以及推廣預鑄、輕量化、被動式節能產品實際應用的可行性。
This study evaluates the performance of lightweight ceramsite concrete blocks produced in Taiwan by assessing compressive strength and thermal conductivity. Using ceramsite aggregates of three density grades (300, 500, 700 kg/m³) and five mix ratios (300-F40, 300-F50, 500-F30, 500-F60, 700-F50), blocks were cured using soaking and watering methods and tested at 28 and 365 days. Compressive test specimens measured 30 x 30 x 12 cm, and thermal conductivity specimens were 5 x 5 x 4 cm.
Mechanical tests analyzed compressive strength, elastic modulus, strength-to-weight ratio, and coefficient of variation. Results showed low-density blocks had slight strength reductions due to drying shrinkage, while high-density blocks improved with thorough curing. Saturating specimens in calcium hydroxide solution enhanced stability. Thermal conductivity tests revealed k-values increased with unit weight and were significantly improved by saturated curing. The 500-F30 mix had superior thermal properties due to favorable aggregate composition and complete hydration.
Regression models confirmed the predictive accuracy for thermal performance, supporting these blocks' use in energy-efficient buildings. This study optimizes the manufacturing process and enhances the practical application of lightweight ceramsite concrete blocks, providing a reliable reference for design.
[1] 李璐(2020)。梯度功能汙泥陶粒混凝土砌塊的研究[未出版之碩士論文]。浙江工業大學。
[2] 陳明(2022)。頁岩陶粒的製備與高強次輕混凝土的性能研究[未出版之碩士論文]。西南科技大學。
[3] Yafei Sun, Peiwei Gao, Fei Geng, Haoran Li, Lifang Zhang, Hongwei Liu(2017). Thermal conductivity and mechanical properties of porous concrete materials. Materials Letters, 209, 349-352. https://doi.org/10.1016/j.matlet.2017.08.046
[4] 王鵬(2008)。陶粒混凝土基本力學性能的試驗研究[未出版之碩士論文]。長沙理工大學。
[5] Waleed, H. K., Ramazan, D., Khatib, Z. F.(2022). Assessment of factors impacting thermal conductivity of cementitious composites—A review. Cleaner Materials, 5.https://doi.org/10.1016/j.clema.2022.100127
[6] Ramazan Demirboğa, Rüstem Gül(2003). The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cement and Concrete Research, 33(5), 723-727. https://doi.org/10.1016/S0008-8846(02)01032-3
[7] Jiaqi Chen, Hao Wang, Pengyu Xie, Husam Najm(2019). Analysis of thermal conductivity of porous concrete using laboratory measurements and microstructure models. Construction and Building Materials, 218, 90-98. https://doi.org/10.1016/j.conbuildmat.2019.05.120
[8] Farshad, D., Mehdi, D., Hossein, Y., Haleh, R., Satheeskumar, N.(2021). Residual compressive stress–strain relationship of lightweight aggregate concrete after exposure to elevated temperatures. Construction and Building Materials, 298. https://doi.org/10.1016/j.conbuildmat.2021.123890
[9] Georges, R., Anne-Lise, B., Javad, E., Dashnor, H., Albert, N.(2021). Influence of lightweight aggregates on the physical and mechanical residual properties of concrete subjected to high temperatures. Construction and Building Materials, 298. https://doi.org/10.1016/j.conbuildmat.2020.121221
[10] Dabbaghi, F., Yang, T. Y., Tanhadoust, A., Emadi, S. B., Dehestani, M., Yousefpour, H.(2022). Experimental and numerical investigation on post- fire seismic performance of light weight aggregate reinforced concrete beams. Engineering Structures, 268. https://doi.org/10.1016/j.engstruct.2022.114791
[11] Rita Nemes(2014). LIGHTWEIGHT AGGREGATE CONCRETE: EFFECT OF AGE AND CURING METHOD. JOURNAL OF FACULTY OF CIVIL ENGINEERING, 26.https://doi.org/10.14415/zbornikGFS26.04
[12] X. F. Wang, C. Fang, W. Q. Kuang, D. W. Li, N. X. Han, F. Xing(2017). Experimental investigation on the compressive strength and shrinkage of concrete with pre-wetted lightweight aggregates. Construction and Building Materials, 155, 867-879. https://doi.org/10.1016/j.conbuildmat.2017.07.224
[13] Kwang Soo Youm, Yeon Jong Jeong, Erie Seong Ho Han, Tae Sup Yun(2014). Experimental investigation on annual changes in mechanical properties of structural concretes with various types of lightweight aggregates. Construction and Building Materials, 73, 442-451.https://doi.org/10.1016/j.conbuildmat.2014.09.044
[14] T. M. I. Mahlia, B. N. Taufiq, Ismail, H. H. Masjuki(2007). Correlation between thermal conductivity and the thickness of selected insulation materials for building wall. Energy and Buildings, 39, 182-187. https://doi.org/10.1016/j.enbuild.2006.06.002
[15] 周展言(2023)。輕質陶粒混凝土之配比設計與其力學及隔音性能[未出版之碩士論文]。國立成功大學。
[16] Iman Asadi, Payam Shafigh, Zahiruddin Fitri Bin Abu Hassan, Norhayati Binti Mahyuddin(2018) Thermal conductivity of concrete – A review. Journal of Building Engineering, 20, 182-187. https://doi.org/10.1016/j.jobe.2018.07.002
[17] Kirubajiny Pasupathy, Sayanthan Ramakrishnan, Jay Sanjayan(2020). Enhancing the mechanical and thermal properties of aerated geopolymer concrete using porous lightweight aggregates. Construction and Building Materials, 264.https://doi.org/10.1016/j.conbuildmat.2020.120713
校內:2026-07-10公開