| 研究生: |
陳建銘 Chen, Jain-Ming |
|---|---|
| 論文名稱: |
金屬發泡材流道應用於直接硼氫化鈉-過氧化氫燃料電池 Metal Foams as Flow Field in Direct Sodium Borohydride-Hydrogen Peroxide Fuel Cell |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 硼氫化鈉燃料電池 、金屬發泡材 、鐵氟龍 |
| 外文關鍵詞: | DBFC, metal foam, PTFE |
| 相關次數: | 點閱:140 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
題 目:金屬發泡材流道應用於直接硼氫化鈉-過氧化氫燃料電池
研 究 生:陳建銘
指導教授:鄭金祥(chcheng@mail.ncku.edu.tw)
溫志湧(chihyung.wen@polyu.edu.hk)
本研究主要探討金屬發泡材應用於直接硼氫化鈉-過氧化氫燃料電池(Direct Sodium Borohydride – Hydrogen Peroxide Fuel Cell, DBFC)之適用性,並以流道進出口的壓降以及電池性能做為探討依據。
研究使用自行設計之電池進行實驗;第一部分以測量進出口的壓降結果,對流道特性的了解與分析;第二部分將操作參數設定在流道形式與陽極硼氫化鈉濃度,並試圖測試出最佳之電池性能表現。
其結果顯示,將金屬發泡材應用於陽極流道有助於提升電池性能,其電池性能皆大於傳統的蛇形流道;針對發泡材孔隙大小不同的探討中,孔隙大的發泡材壓降較低,代表其流場結構阻力較小;孔隙小的發泡材有較佳的燃料分佈;針對塗佈PTFE與否之發泡材討論中,孔隙大的發泡材適合利用此方法提升電池性能,其塗佈後有助於氫氣的排除以及燃料均勻度的提升;孔隙小的發泡材並不適用此方法,因塗佈後會使孔隙過小,影響燃料傳輸;實驗得到電池的最佳效能為單電池18W的功率輸出。
Subject:Metal Foams as Flow Field in Direct Sodium Borohydride-Hydrogen Peroxide Fuel Cell
Student:Jain-Ming Chen
Advisor:Chin-Hsiang Cheng(chcheng@mail.ncku.edu.tw)
Chih-Yung Wen(chihyung.wen@polyu.edu.hk)
The main purpose of this study is to investigate the metal foams as a flow passage in the direct sodium borohydride – hydrogen peroxide fuel cell (DBFC) based on the pressure drop and the performance of the single cell. First, the measurement of the pressure drop of different flow channels was performed. Second, we set the experimental parametric values for the different flow channels and different concentrations of borohydride in anode, and tried to find the best performance of a single cell.
The result reveals that the performance is improved by using the metal foam as the flow passage. The performance of metal foams are better than that for the serpentine one. In the study of the effect of different sizes of metal foams, it is found that a larger pore size results in a lower pressure drop because of less resistance moreover. A smaller pore size results in a uniform flow distribution in the reaction area. In the study of the effect of metal foams coated with /without PTFE, a larger pore size is appropriate for coating PTFE on metal foam. It can enhance the removal of the hydrogen production and produce the uniform flow distribution in the reaction area. A smaller pore size is not appropriate for this way. It will greatly reduce the average of pore size after coating PTFE. Experimental result indicated that the maximum power achieved 18 W respectively.
[1] 黃鎮江,“綠色能源”,初版,全華圖書股份有限公司,pp.1-4-1-21,2008
[2] 黃鎮江,“燃料電池”,第二版,全華科技圖書股份有限公司,2007
[3] 林昇佃等人,“燃料電池:新世紀能源”,初版,滄海書局, pp.1-30-1-35,2004
[4] 陳嘉宏,“直接硼氫化鈉-過氧化氫燃料電池之研究”,國立成功大
學航空太空工程學系碩士論文,2011
[5] N. Luo, G.H. Miley, J. Mather, R. Burton, G. Hawkins, E. Byrd, F. Holcomb, J. Rusek, “Engineering of the Bipolar Stack of a Direct NaBH4 Fuel Cell, ” Journal of Power Sources, 185 (2008), 356–362
[6] G.H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom, D. Carroll, “Direct NaBH4/H2O2 Fuel Cells,” Journal of Power Sources, 165 (2007), 509–516.
[7] L. Gu, N. Luo, G.H. Miley, “Cathode Electrocatalyst Selection and Deposition for a Direct Borohydride/Hydrogen Peroxide Fuel Cell, ” Journal of Power Sources, 173 (2007), 77–85.
[8] D.J. Brodrecht, J.J. Rusek, “Aluminum–Hydrogen Peroxide Fuel-Cell Studies, ” Applied Energy, 74 (2003), 113–124.
[9] B.H. Liu, Z.P. Li, S. Suda, “Development of High-Performance Planar Borohydride Fuel Cell Modules for Portable Applications, ” Journal of Power Sources, 175 (2008), 226-231
[10] H. Cheng, K. Scott, “Influence of Operation Conditions on Direct Borohydride Fuel Cell Performance, ” Journal of Power Sources, 160 (2006), 407–412
[11] C. Kim, K.J. Kim, M.Y. Ha, “Investigation of the Characteristics of a Stacked Direct Borohydride Fuel Cell for Portable Applications”, Journal of Power Sources 180 (2008) 114–121
[12] H. Cheng, K. Scott, K. Lovell, “Material Aspects of the Design and Operation of Direct Borohydride Fuel Cells,” Fuel Cells, 5 (2006), 367–375
[13] K.T. Park, U.H. Jung, S.U. Jeong, S.H. Kim, “Influence of Anode Diffusion Layer Properties on Performance of Direct Borohydride Fuel Cell,” Journal of Power Sources, 162 (2006), 192–197
[14] J. Ma, Y. Sahai, R.G. Buchheit, “Direct Borohydride Fuel Cell using Ni-based Composite Anodes, ” Journal of Power Sources, 195 (2010), 4709-4713
[15] W. Haijun, W. Cheng, L. Zhixiang, M. Zongqiang, “Influence of Operation Conditions on Direct NaBH4/H2O2 Fuel Cell Performance, ” Journal of Hydrogen Energy 35 (2010) 2648-2651
[16] S. Lux, L. Gu, G. Kopec, R. Bernas, G. Miley, “Water Management Issues for Direct Borohydride/Peroxide Fuel Cells, ” Journal of Fuel Cell Science and Technology, 7 (2010), 24501-24505
[17] B.H. Liu, S. Suda, “Influences of Fuel Crossover on Cathode Performance in a Micro Borohydride Fuel Cell,” Journal of Power Sources, 164 (2007), 100–104
[18] C. Celik, F.G.B. San, H.I. Sarac, “Influences of Sodium Borohydride Concentration on Direct Borohydride Fuel Cell Performance, ” Journal of Power Sources, 195 (2010), 2599–2603
[19] B.H. Liu, Z.P. Li, J.K. Zhu, S. Suda, “Influences of Hydrogen Evolution on the Cell and Stack Performances of the Direct Borohydride Fuel Cell,” Journal of Power Sources, 183 (2008), 151–156
[20] C. Kim, K.J. Kim, M.Y. Ha, “Performance Enhancement of a Direct Borohydride Fuel Cell in Practical Running Conditions, ” Journal of Power Sources, 180 (2008), 154–161
[21] S. Arisetty, A.K. Prasad, S.G. Advani , “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, 165 (2007), 49–57
[22] T. Shudo, K. Suzuki, “Performance Improvement in Direct Methanol Fuel Cells Using a Highly Porous Corrosion-Resisting Stainless Steel Fow Feld,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 33(2008), 2850-2856
[23] R. Chen, T.S. Zhao,” Porous Current Collectors for Passive Direct Methanol Fuel Cells,” Electrochimica Acta, 52 (2007), 4317–4324
[24] 蔡秉蒼,曾重仁,”應用金屬發泡材為流道之質子交換膜燃料電池之研究“,國立中央大學機械工程學系博士論文,2012
[25] 曾俊瑋,“無閥阻抗式微泵應用於直接硼氫化鈉燃料電池性能之 研究”,國立成功大學航空太空工程學系碩士論文,2012
[26] K. Wang, J. Lu, L. Zhuang, “A Mechanistic Study of Borohydride Anodic Oxidation” , Journal of Catalysis (2010)
[27] T. Park, U. Jung, S. Joeng, S. Kim, “Influence of Anode Diffusion Layer Properties on Performance of Direct Borohydride Fuel Cell ,” Journal of Power Sources, 162 (2006), 192–197
[28] Z. P. Li, B. H.Liu, J. K. Zhu, S. Suda, “Depression of Hydrogen Evolution During Operation of a Direct Borohydride Fuel Cell” , Journal of Power Sources, 163 (2006), 555–559