簡易檢索 / 詳目顯示

研究生: 侯佳玟
Hou, Chia-wen
論文名稱: 最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究
Vibration Control Performance of Pseudo Hybrid Mass Damper Systems with Optimal Time Delay Compensation
指導教授: 朱世禹
Chu, Shih-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 133
中文關鍵詞: 離散時間最佳化控制理論時間延遲連續時間最佳化控制理論多重取樣時域分析法擬混合型調諧質量阻尼器
外文關鍵詞: Multi-Sampling Period Response Analysis, the Discrete-Time Optimal Control Theory, Time Delay, the Continuous Time Control Theory, Pseudo Hybrid Mass Damper System
相關次數: 點閱:103下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於外力形式之隨機特性與系統識別之誤差,傳統被動調諧質量阻尼器(TMD)系統對於頻率去調諧效應十分敏感,而藉由混合型調諧質量阻尼器(HMD)進行額外主動控制力施加輔助時,時間延遲效應勢必產生,預期造成控制效果折減。實務上,由於被動系統之阻尼項參數掌握不易,本文提出可調式「擬混合型調諧質量阻尼器」系統,並經由最佳化時間延遲補償之主動控制力來提供所需之阻尼力。

    為提供此一控制系統於實務應用上之設計與安裝準則,並配合電腦數位控制裝置之運作,本文以離散時間數位控制理論為基礎,考慮時間延遲影響,運用最佳化直接輸出回饋控制法則,探討其在頻率域上之控制成效,亦進一步利用「多重取樣之時域分析法」來進行歷時控制效果之探討與驗證。結果驗證本文所提出之擬混合型調諧質量阻尼器系統,在選擇恰當的最佳化控制設計值及最佳延遲時間時,利用離散時間最佳化控制增益理論,補償時間延遲效應並提供穩定的模態阻尼及調諧的模態頻率,其控制成效優於傳統之TMD與HMD系統。

    The vibration mitigation performance of a conventional tuned mass damper system (TMD) is very sensitive to the fluctuation in tuning of the designed frequency to the
    natural frequency of the main system. Because of the stochastic characteristics of external loading and the errors of identifying system parameters, a hybrid mass damper system (HMD) with optimal selection on control parameters can enhance the designed performance with the help of a supplementary active force acted between the main system and the mass damper. However, the control performance degradation induced by the control force application time delay should be considered and investigated before practical application.

    In practical consideration, using discrete time optimal control theorem involved time delay effect ,the Pesudo Hybrid Mass Damper (PHMD) systems are proposed to investigate the interactive detuning of parameter and time delay. A multiple-sampling -rate algorithm is applied to verify the control performance in time domain subjected to earthquake excitations. From numerical results of frequrncy domain and time domain, if choose optimal control designed value and optimal delay time, the good control performance provide stable modal damping and keep tuning,which better than TMD & HMD system.

    論文摘要.....................................................I 致謝.......................................................III 表目錄......................................................VI 圖目錄....................................................VIII 第一章 緒論...............................................1 1.1 前言............................................1 1.2 文獻回顧.........................................3 1.3 本文內容.........................................6 第二章 擬混合型調諧質量阻尼器系................8 2.1 廣義調諧質量阻尼器....................................9 2.2直接輸出控制增益理論.............................13 2.2.1 連續時間控制增益..........................13 2.2.2 連續系統離散化...........................17 2.2.3 離散時間最佳化控制增益....................19 2.3 頻率域之穩定性分析...................................24 2.3.1 連續時間系統模態特性.....................24 2.3.2 離散時間系統模態特性......................25 2.4時間域分析與反應譜分析方法............................29 2.4.1 模態疊加法................................30 2.4.2 反應頻譜法................................32 2.4.3 多重取樣時域分析法........................34 第三章 單自由度系統控制成效.............................36 3.1 採連續時間控制增益之系統模態特性受時間延遲影響之探討.36 3.1.1擬混合型PHMDN%(td)系統模態特性探討.......36 3.1.2擬混合型 (td)系統模態特性探討............38 3.2採連續時間控制增益之系統歷時控制成效驗證..............41 3.2.1 模態疊加法、反應頻譜法、非線性歷時分析比較...41 3.2.2 歷時控制成效驗證.........................44 3.3 離散時間最佳化時間延遲補償控制效果..............47 3.3.1 頻率域分析................................48 3.3.2歷時反應驗證...............................50 3.4 小結............................................51 第四章 多自由度系統控制驗證.............................52 4.1 多自由度系統參數....................................52 4.2 被動參數設計.........................................53 4.3多自由度連續時間控制成效.............................54 4.3.1 頻率域分析................................54 4.3.2 歷時反應驗證..............................56 4.3.3 不同地震成效驗證..........................58 4.4離散時間補償控制效果驗證..............................59 4.4.1 控制增益值探討...........................60 4.4.2 頻率域分析................................61 4.4.3 歷時反應驗證..............................63 4.5 小結.......................................................66 第五章 結論與展望........................................67 參考文獻.................................................70

    [1] Asami,T., Wakasono, T., Kameoka, K., Hasegawa, M., and Sekiguchi, H., “Optimal design of dynamic absorbers for a system subjected to random excitation”,JSME
    International journal,series 3, 34(2), 218-226(1991)
    [2] Xu, K., and Igusa, T., “Dynamic characteristics of multiple substructures with closely Spaced frequencies”, Earthquake Engineering and Structural Dynamics , 21(12), 1059-1070(1992).
    [3] Yamaguchi,H., and HarnpornchI, N., “Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced Oscillations spaced frequencies”, Earthquake Engineering and Structural Dynamics.,22(12), 51-62(1993).
    [4] Fujino, Y., and Abe, M., “Dynamic characteristic of multiple tuned mass dampers and some design formulas”, Earthquake Engineering and Structural Dynamics, 23, 813- 835 (1994).
    [5] Abe, M., and Igusa, T., “Tuned mass dampers for structures with closely spaced natural frequencies”, Earthquake Engineering and Structural Dynamics, 24, 247-261(1995).
    [6] Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., and Yao, J.T.P., “Structural Control: Past, Present, AND Future”, Journal of Engineering Mechanics (ASCE), 123(9), 897-971 (1997).
    [7] Chang, J.C.H., and Soong, T.T., “Structural control using active tuned mass damper”,
    Journal of Engineering Mechanics, 106(6), 1091-1098 (1980).
    [8] Yang, J.N., Akbarpour, A., Askar, G., “Effect of time delay on control of seismic excited building”, Journal of Structural Engineering (ASCE), 116(10), 2801-2814(1990)
    [9] Agrawal, A.K., Fujino, Y., Bharita, B.K., “Instability due to time delay and its compen -sation in active control of structures”, Earthquake Engineering and Structural Dynamics, 22(3), 211-224 (1993).
    [10] Inaudi, J.A., Kelly, J.M., “A robust delay-compensation technique based on memory”, Earthquake Engineering and Structural Dynamics, 23, 987-1001 (1994).
    [11] Agrawal, A.K., Yang, J.N., “Effect of fixed time-delay on stability and performance of actively controlled civil engineering structures”, Earthquake Engineering and
    Structural Dynamics, 26,1169-1185 (1997).
    [12] Lin, C.C., Sheu, J.F., Chu, S.Y., Chung, L.L., “Time-delay effect and its solution for optimal output feedback control of structures”, Earthquake Engineering and Structural Dynamics, 25, 547-559 (1996).
    [13]Chu, S.Y., Soong, T.T., Lin, C.C., and Chen, Y.Z., “Time-delay effect and compensation on direct output feedback controlled mass damper systems”, Earthquake
    Engineering and Structural Dynamics, 31, 121-137 (2002).
    [14]Abdel-Rohman, M., “Time-delay effects on actively damped structures”, Journal of Engineering Mechanics (ASCE), 113(11), 1709-1719, (1987).
    [15]Chung, L.L., Lin, R.C., Soong, T.T., and Reinhorn, A.M., “Experimental study of active control for MDOF seismic structures”, Journal of Engineering Mechanics
    (ASCE), 115(8), 1609-1627 (1989).
    [16] Chung, L.L., Lin, C.C., Liu, K.H., “Time-delay control of structure”, Earthquake Engineering and Structural Dynamics, 24(5), 687-701 (1995).
    [17]Agrawal, A.K., Yang, J.N., “Compensation of time-delay for control of civil engineering structures”, Earthquake Engineering and Structural Dynamics, 29, 37-62,
    (2000)
    [18] Balas, M.J., “Active control of flexible systems”, Journal of Optimization Theory and Application, 25, 415-436 (1978).
    [19] Chung, L.L., Lin, C.C., and Chu, S.Y., “Optimal direct output feedback of structural control”, Journal of Engineering Mechanics (ASCE), 119, 2157-2173 (1993).
    [20] Sinha, R. and T. Igusa., "CQC and SRSS methods for non-classically damped structures". Earthquake engineering and structural dynamics , 24, 615-619 (1995)
    [21]廖源治,「具時間延遲之擬混合調諧質量阻尼器系統」,國立暨南國際大學土木工程研究所 (2005)。
    [22] 呂國華,「考慮時間延遲之離散時間系統最佳直接輸出回饋控制」,國立中興大學土木工程研究所 (1993)。
    [23] Chu, S.Y., “Integration issues in implementation of active structure control system”, ph.D. Thesis, State University of New York at Buffalo, Buffalo, New York (2001)
    [24] 朱世禹,「直接輸出回饋之主動結構控制」,國立中興大學土木工程研究所(1993)。
    [25] Newmark ,N.M., “A method of computation for structural dynamics”, Journal of Engineering Mechanics division, 85(EM3),67-94 (1959).
    [26] Hart,G..C., Vasudevan,R., “Earthquake design of buildings : damping ”, Journal of Engineering Mechanics (ASCE), 101(ST1) (1975).
    [27] Goodman,L.E.., Rosenblueth.,E ., and Newmark, N.M., “A seismic design of firmly founded elastic structures”, Trans.ASCE ,120, 782-802 (1955).
    [28] Kiureghian, A .Der., “On response of structures to stationary excitations ”, Report No.UCB/EERC-79/32,Earthquake Engineering Research Center, University of California, Berkeley, CA (1979).
    [29] Lin, C.C., Chung, L.L., Lu, K.H., “Optimal discrete-time structural control using direct output feedback”, Engineering Structures, 18(6), 472-480 (1996).
    [30] Lu,L.Y,“Predictive control of seismic structures with semi-active friction dampers”,Earthquake Engineering and Structural Dynamics, 33, 647–668(2004).
    [31] Lu, L.Y. and Chung L.L. ,“Modal control of seismic structures using augmented state matrix”,Earthquake Engineering and Structural Dynamics, 30(2), 237-256(2001).

    下載圖示 校內:立即公開
    校外:2007-08-20公開
    QR CODE