簡易檢索 / 詳目顯示

研究生: 高瑞彣
Kao, Jui-Wen
論文名稱: 使用測量儀器於自動化變形監測之約制與規範分析
Analysis of Constraints and Standard Operating Procedures for Automatic Deformation Monitoring by Surveying Instruments
指導教授: 余騰鐸
Yu, Ting-To
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 自動化全測儀衛星定位系統結構物微變形
外文關鍵詞: Robotic Total Station, Global Positioning System, Structure, Micro-deformation
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先探討傳統測量儀器應用於變形監測上之差異,探討的項目包括:用途、特點、精度、誤差…等方向,並提出自動化全測儀(RTS)與衛星定位系統(GPS)於變形監測上之系統誤差修正,再將兩者資料結合實際應用於結構物變形監測。
    本研究分為室內實驗與野外應用兩部分進行:室內實驗為修正RTS系統誤差探討不同的天氣狀況及使用玻璃保護窗在不同角度(30°~150°,每隔15°進行測量)與距離(50、60、80、100cm)對RTS資料獲取與成果精度的影響,結果顯示天氣狀況與玻璃窗距離並非影響RTS數據結果之主因,而是因玻璃保護窗的角度與厚度會使得雷射光折射改變路徑,而不同的折射率對RTS資料獲取產生影響,水平角約減少0.1~0.5分,垂直角約介於-0.5~+0.5分,尤以電子測距(Electronic Distance Measurement, EDM)影響最鉅,最大可到7mm,因此,若將RTS置於玻璃保護箱內,獲取的數據需先進行對應修正處理後才能應用監測工程上,可提高資料精度及減少誤差。
    另外,在野外實驗方面,本研究針對位於台南市成功大學資源工程學系後方施工中工地旁的大地工程館,利用RTS和GPS進行長期的監測,並將兩者資料結合進行校對及修正後,再和施工階段做分析比對,實驗結果指出,RTS與GPS兩者接收之數據有相同變位趨勢,且資料結果顯示施工項目的改變會影響此結構物之變位幅度,長期趨勢可以發現本實驗之結構物變位朝西北方傾斜,並無明顯沉陷現象。於本研究中之GPS動態解算成果發現,本測試結構物白天時段的振盪頻率比晚間時段高,振盪頻率約在5~6Hz,較一般工程結構物之振動主頻3~4Hz高,且此基線長度因施工項目改變而隨時間增加後縮短長度(798.948m798.934m),當支撐工程完成後,基線變化率也漸趨於穩定,顯示本次建物之輕微傾斜乃受鄰近工地之地下開挖所引起,而此工程上之建物變位監測,在短時間、小變量的狀況下,仍能由測量儀器成功的監測,顯示將GPS結合RTS此監測方法在未來類似案例進行自動化監測的可行性。

    This study illustrates the difference of using surveying instruments, robotic total station (RTS) and global positioning system (GPS), in deformation monitoring; such as purposes, characteristics, accuracy, errors…etc. In addition, this study also tries to reduce the errors within data handling processing and demonstrate the feasibility by a real monitoring case.
    The experiments of this study could be divided into two parts: laboratory and field test. The laboratory experiment tried to find the measurement deviation of RTS and to correct the systematic errors that produced by the weather condition and glass window of protective box. Test is carried at different distances (50, 60, 80 and 100 cm) and angles (30°~150°,in every 15° to take a survey) are carried out. The results reveal the weather condition and the distances are not the main reasons to affect the signals of RTS but the angles and thickness of glass should be the major cause of such error. Since the index of refraction, it would change the laser path of RTS which cause an extra error. Compare to the normal situation, the horizon angle would reduce about 0.1~0.5’and the vertical angle would change between -0.5~+0.5’. Especially for the signals of electronic distance measurement, it would rise an additional 7mm in length. Therefore, it is necessary to adjust data according to the distances and various shooting angle before applying to any engineering application, if the RTS is located within a protective box.
    In field test, the monitor of structure by RTS and GPS is carried out for 3 months periods of time where the building is near to a construction site behind the resource engineering department at NCKU campus in Tainan, and then combined both of data to analyze the deformation and linked with construction records. The evidences show that there is a similar deformed tendency between RTS and GPS. Besides, the change of construction status would affect the attitude of measured deformation. The results show that the structure inclines to the N-W direction, and no subsidence was found. In GPS kinematic analysis, the oscillational frequency of the testing structure in day is higher than in night, is about 5~6 Hz. Besides, the length of the baseline was shortening as time elapsed (798.948m 798.934m). After finishing steel beam supporting for the construction site, the baseline became stable eventually. These results display that the detected inclined deformation of structure is caused by the underground excavation from nearby construction site. In addition, the evidences also show that the surveying instruments are capable in providing reliable and accurate micro-deformation measurements in monitoring and alarming system within short period of time. Therefore, it is possible to apply this technology to other similar cases by using the automatic monitor with surveying equipments in the future.

    摘要 I Abstract III 誌謝 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 1-3 研究流程 3 第二章 文獻回顧 5 2-1 常用結構物與坡地安全監測理論與方法 5 2-2 常見測量儀器案例說明 16 2-3 全球定位系統(GPS)應用回顧 18 2-4 全自動全測儀(RTS)應用回顧 23 2-5 小結 27 第三章 研究方法 29 3-1 研究設備簡述 29 3-1.1 實驗設備-全球定位系統(GPS) 29 3-1.2 實驗儀器-自動化全測儀(RTS) 35 3-1.3 實驗輔助設備-反射稜鏡介紹 39 3-2 研究設計 40 3-2.1 GPS與RTS誤差來源 40 3-2.2 室內進行RTS之相關系統誤差修正 46 3-2.3 野外實際案例應用 52 第四章 研究成果 58 4-1 RTS系統誤差修正 58 4-2 RTS長時間位移分析 65 4-3 RTS短時間瞬時振盪 68 4-4 GPS靜態基線解算 69 4-5 GPS動態解算結果 74 4-6 實驗結果總結 77 4-7 觀測SOP擬定 79 第五章 結論與建議 81 5-1 結論 81 5-2 建議 83 參考文獻 85

    1.孔祥元、梅是義,控制測量學,武漢大學出版社,2002。
    2.史天元、彭淼祥、徐偉城,應用空載雷射掃描儀進行地震災區變形研究,農委會91-農科-5.1.1-林-R1(8)計畫報告,共123頁,2002。
    3.行政院農業委員會水土保持局南投分局,廬山地滑監測及後續治理規劃成果報告,共270頁,2008。
    4.交通部中央氣象局氣象預報中心,氣候監測報告(二月至五月),交通部中央氣象局,2011年2月至2011年5月。
    5.吳明陽,應用全測站經緯儀與近景攝影測量技術於地滑災害地形測量之可行性研究,國立中興大學土木工程研究所碩士論文,2008。
    6.何維信,測量學第三版修訂本,宏泰出版社,1999。
    7.李佳原,利用 INS/GPS 定位定向網格監測摩天大樓之研究,國立成功大學測量工程研究所碩士論文,2010。
    8.李良輝、薛憲文,橋河共治區基本資料調查研究-第二次期中報告書,交通部運輸研究所與國立高雄應用科技大學合作辦理,2011年7月。
    9.林鴻成、饒瑞鈞、曾清涼,旗山斷層中南段GPS監測分析,台灣地理資訊學會年會暨學術研討會論文摘要集,2007。
    10.周忠漠、易杰軍,GPS衛星測量原理與應用,測繪出版社,1992。
    11.陳啟仁,非破壞檢監測技術在古蹟建築保存之運用現況,中華民國建築學報,2004年6月。
    12.張紫鈴,台灣地區GPS 衛星追蹤站1999-2002年位移速度場之分析,國立成功大學測量工程研究所碩士論文,2003。
    13.黃安斌、林志平、董家鈞、廖志中、潘以文,道路邊坡高效能監測系統研發與崩塌預警基準制定,交通部,2002。
    14.黃聲享、尹暉、蔣徵,變形監測數據處理第二版,武漢大學出版社,2010年10月。
    15.曾清涼、余致義、何慶雄、劉啟清、楊名,GPS衛星定位理論與實務第一版,國立成功大學衛星資訊研究中心技術叢書001號,1998年5月。
    16.曾清涼、儲慶美,GPS衛星測量原理與應用第一版,國立成功大學衛星資訊研究中心技術叢書003號,1999年3月。
    17.廖瑞堂,山坡地護坡工程設計,科技圖書股份有限公司出版,2001。
    18.蔡漢昌,EDM三角高程測量精度分析之研究,國立成功大學地球科學研究所碩士論文,2007。
    19.蕭國鑫、劉進金、游明芳、曾義星,航測與三維雷射掃描資料應用於九份二山地形變化分析,航測及遙測學刊,第十卷,第二期,第191-202 頁,2005年6月。
    20.謝照明、倪至寬,建築施工與山坡地災害防治執行計畫-基礎開挖、支撐及監測儀器工程手冊,內政部建築研究所,2003年12月。
    21.謝照明、蘇瑛敏,建築施工與山坡地災害防治執行計畫-山坡地住宅社區危險預警通報系統作業操作手冊,內政部建築研究所,2003年12月。
    22.聶讓,全站儀與高等級公路測量,人民交通出版社,1997。
    23.Agilent 34970A 資料擷取/交換器 產品簡介from WEB site http://cp.literature.agilent.com/litweb/pdf/5965-5290ZHA.pdf
    24.Breuer, C., Sensorkommunikation bei automatisierten Monitoringsystemen, Trimble Germany GmbH Raunheim, 2007.
    25.Brown, N., Kaloustian, S., and Roeckle, M., “Monitoring of Open Pit Mines using Combined GNSS Satellite Receivers and Robotic Total Stations”, International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, September 2007.
    26.Chan, W. S., Xu, Y. L., Ding, X. L., Xiong, Y. L., and Dai, W. J., “Dynamic Displacement Measurement Accuracy of GPS for Monitoring Large Civil Engineering Structures”, The International Society for Optical Engineering, Vol. 5765,pp. 54-65, March 2005.
    27.Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., and Arnold M. with Agwe, J., Buys, P., Kjekstad, O., Lyon, B., and Yetman, G., Natural Disaster Hotspots: A Global Risk Analysis, The World Bank , IBRD, Hazard Management Unit, Washington, D.C., 2005.
    28.Duffy, M. A., Hill, C., Whitaker, C., Chrzanowski, A., Lutes, J., and Bastin, G., “An Automated and Integrated Monitoring Program for Diamond Valley Lake in California”, 10th FIG Intl. Symp. On Deformation Measurements, Orange, CA, March 2001.
    29.Ehiorobo, J. O., “Accuracy of Static Differential GPS Techniques; Implications for Structural Deformation Monitoring”, Advanced Materials Research, Vol. 62-64, pp. 31-38, 2009.
    30.GSM-19T Proton Magnetomete, GEM Systems Advanced Magnetometer, from WEB site http://www.lionshare.ca/gemsite5/PDFDocs/GSM_19T.pdf
    31.Gunzburger, Y., Merrien-Soukatchoff, V., and Guglielmi, Y., “Influence of Daily Surface Temperature Fluctuations on Rock Slope Stability: Case Study of the Rochers de Valabres Slope (France)”, International Journal of Rock Mechanics and Mining Sciences 42, pp. 331-349, April 2005.
    32.Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., GPS Theory and Practice, Second Edition, Springer-Verlag Wien New York, 1992.
    33.Huang, S., “Land Warming as Part of Global Warming”, EOS (Transactions of American Geophysical Union), Vol. 87, No. 44, pp. 477-480, October 2006.
    34.Hudnut K. W., and Behr, J. A., “Continuous GPS Monitoring of Structural Deformation at Pacoima Dam, California”, Seismological Research Letters, Vol. 69, No. 4, pp.299-308, 1998.
    35.Inaudi, D., Casanova, N., and Glisic B., Long-term deformation monitoring of historical constructions with fiber optic sensors, Historical Constructions, P.B. Lourenço, P. Roca (Eds.), Guimarães, 2001.
    36.Jamroz, O., “Geodynamical Investigations in the Local Network SNIEZNIK KLODZKI”, Acta Geodyn. Geomater., Vol. 5, No. 3 (151), pp. 323-328, May 2008.
    37.Lachapelle, G., Cannon, M. E., and Lu, G., “High-precision GPS navigation with emphasis on carrier-phase ambiguity resolution” Marine Geodesy, Vol. 15, No.4, pp. 253-269, 1992. 
    38.Leach, M. P., and Hyzak, M. D., “GPS Structural Monitoring as Applied to a Cable-stayed Suspension Bridge”, Proc., Int. Fed. of Surveyors (FIG) 20th Congr., 606.2/1-606.2/12, 1994.
    39.Lovse, J. W., Teskey, W. F., Lachapelle, G., and Cannon, M. E., “Dynamic Deformation Monitoring of Tall Structure Using GPS Technology”, Journal of Surveying Engineering 29, Vol. 121, No.1, pp. 35-40, 1994.
    40.Lutes, J., Chrzanowski, A., Bastin, G., and Whitaker C., ““DIMONS” Software for Automatic Data Collection and Automatic Deformation Analysis”, 10th International (FIG) Symposium on Deformation Measurements, Orange, California, March 2001.
    41.Mackey, B.H., Roering, J.J., and McKean, J.A., “Long-term Kinematics and Sediment Flux of an Active Earthflow, Eel River, California”, The Geological Society of America, Vol.37, No.9, pp. 803-807, 2009.
    42.Ogaja, C., Rizos, C., Wang J., and Brownjohn J., “Toward The Implementation of ON-LINE Structural Monitoring Using RTK-GPS and Analysis of Results Using The Wavelet Transform”, Deformation Measurements and Analysis, 10th International Symposium on Deformation Measurements, 19-22 March 2001, Orange, California, USA, 284-29, 2001.
    43.Optech ALTM-3100EA, Airborne Surveying, Optech Inc., Canada.
    More product details from WEB site http://news.thomasnet.com/fullstory/Accelerometers-measure-vibration-in-3-orthogonal-directions-467125
    44.Optech ILRIS-3D Intelligent Laser Ranging and Imaging System, Industrial & 3D Imaging, Optech Inc., Canada.
    More product details from WEB site http://news.thomasnet.com/fullstory/Accelerometers-measure-vibration-in-3-orthogonal-directions-467125
    45.Optech行動測量測繪系統 LYNX, Complete Solutions for Mobile Surveying, Optech Inc., Canada. More product details from WEB site http://www.optech.ca/lynx.htm
    46.Psimoulis, Panos A., and Stiros, Stathis C., “Measurement of Deflections and of Oscillation Frequencies of Engineering Structures Using Robotic Theodolites (RTS)”, Engineering Structures, Vol.29, No.12, pp. 3312-3324, December 2007.
    47.Psimoulis, P., Pytharouli, S., Karambalis, D., and Stiros, S., “Potential of Global Positioning System (GPS) to Measure Frequencies of Oscillations of Engineering Structures”, Journal of Sound and Vibration, Vol. 318, No. 3, pp. 606–623, April 2008.
    48.Seeber, G., Satellite Geodesy: Foundations, Methods, and Applications, Walter de Gruyter& Co., Berlin, Germany, 1993.
    49.Triaxial ICP® Ceramic Shear Accelerometers, Series 354B, product catalog of PCB Piezotronics Inc., USA, 2005.
    More product details from WEB site http://news.thomasnet.com/fullstory/Accelerometers-measure-vibration-in-3-orthogonal-directions-467125
    50.Trimble DiNi Level, Trimble Surveying Products, Trimble Navigation Limited, USA. More product details from WEB site
    http://www.trimble.com/survey/Digital-Levels.aspx
    51.Van de Grift, J. W., and Sack, D., “Monitoring Slump-Earthflow Complex Movement: A Southeastern Ohio Case Study”, Ohio Journal Science, Vol. 104 (5), pp. 126-1135, 2004.
    52.White S., Images of ANTARCTICA Polar Sea, Polar Photo Journal, 2002.
    53.Zhang, Z. L., Mei, W. S., and Di, G. H., “Reseaches on Georobot Deformation Monitoring System Software for Landslides of the Three Geoges”, Hubei Geology & Mineral Resources, Vol.16, No.4, pp. 56-59, 2002.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE