| 研究生: |
郭春滿 Ker, Choon-Muar |
|---|---|
| 論文名稱: |
中國西北部北祁連及柴北緣變質帶中榴輝岩及相關火成岩體之地球化學性質及岩石成因推論 Geochemical characteristics of eclogites and associated igneous rocks from the North Qilian and North Qaidam metamorphic belts in NW China: petrogenesis inferences |
| 指導教授: |
楊懷仁
Yang, Huai-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 237 |
| 中文關鍵詞: | 北祁連變質帶 、柴北緣變質帶 、地球化學 、榴輝岩 、岩石成因 |
| 外文關鍵詞: | North Qilian metamorphic belt, North Qaidam metamorphic belt, geochemistry, eclogite, petrogenesis inferences |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中國大陸西北地區祁連造山帶南北兩側出露之北祁連高壓/低溫(HP/LT)變質帶(北邊)及柴北緣高壓/超高壓(HP/UHP)變質帶(南邊),為解釋古生代時期中亞地區地體構造演化重要關鍵。本研究針對上述變質帶中各個岩石單元(e.g. 蛇綠雜岩體、花崗岩、變質沉積岩和榴輝岩)進行全岩主要、微量原素和同位素(e.g. Sr、Nd、Hf及Pb同位素)分析,為祁連-柴達木早古生代造山作用、造山性質、造山類型和造山機制提供重要制約。根據年代學資料證實,在南北相距約250公里的祁連-柴達木地區,幾乎同時間發生增生造山作用(北祁連高壓/低溫變質帶)和碰撞造山作用(柴北緣高壓/超高壓變質帶)。
北祁連高壓/低溫變質帶由榴輝岩、早古生代蛇綠雜岩體、隱沒-增生雜岩、島弧火山岩、花崗岩侵入體、弧後盆地等地質單元組成,為典型早古生代隱沒-增生型造山帶,同時具典型海洋地殼隱沒特徵,與目前地球上環太平洋地區增生造山帶中出現高壓/低溫變質帶特徵相似。北祁連高壓/低溫變質帶中的東草河蛇綠雜岩體具典型印度洋中洋脊玄武岩Sr-Nd-Pd同位素特徵,與北大西洋-太平洋有顯著區別;根據輝長質蘇長岩的鋯石U-Pb定年得到497 Ma,推測生成於古老的原特提斯洋構造域,證實早古生代祁連洋應往南歸屬於特提斯構造域,屬岡瓦納古陸演化體系。因此,北祁連高壓/低溫變質帶為特提斯造山系的重要組成,與北側天山一帶的中亞造山系不同。北祁連基盤岩體中牛心山花崗岩侵入體的主要和微量元素特徵屬於“I”型花崗岩,形成於活動大陸邊緣與島弧岩漿有關。鋯石U-Pb定年顯示花崗岩形成年代為461±6和453±13 Ma,與北祁連高壓/低溫變質年代相符,推測屬於造山初期古祁連洋板塊隱沒作用產物。根據Nd同位素模式年齡(TDM)特徵發現與北邊阿拉善地塊差異較大,但與南邊祁連地塊較為接近與祁連地塊的親緣性較強。與上述情況相似者另為高壓/低溫榴輝岩和變質沉積岩,微量元素和Nd同位素特徵顯示榴輝岩原岩可能不限於單一構造環境下產物,具早古生代洋殼、島弧岩漿和大陸地殼物質,推測構造環境為隱沒帶上盤增積岩體的活動性大陸邊緣。Nd同位素模式年齡和牛心山花崗岩一致,具南邊祁連地塊分布特徵。綜合變質基盤雜岩花崗岩侵入體和高壓/低溫變質岩研究,推測古祁連洋由北向南隱沒作用確實存在,雖然尚無法解決古祁連海洋板塊隱沒極性的爭議,但提供新的證據和制約。
南側柴北緣高壓/超高壓變質帶由榴輝岩、石榴子石橄欖岩、高壓麻粒岩及具陸殼性質的正副片麻岩構成,上述岩石皆受超高壓變質作用(T > 700 ℃,P > 2.8 GPa),變質時年代為500~420 Ma,榴輝岩原岩形成年代為750~850 Ma,形成於新元古代大陸裂谷和海洋地殼環境。榴輝岩由東到西出露於都蘭、錫鐵山和魚卡河地區,野外地質關係、岩石學及年代學研究顯示柴北緣高壓/超高壓變質帶為大陸深隱沒作用產物,證實柴北緣造山帶具典型隱沒-碰撞造山帶特徵。東側都蘭地區南北兩個亞帶中榴輝岩的微量元素和Nd同位素特徵皆具正常型中洋脊玄武岩、富集型中洋脊玄武岩和島弧岩漿岩特徵;雖然南北變質亞帶在空間上有差距,但榴輝岩礦物組成、原岩性質、年代學和P-T溫壓演化軌跡等證據皆無明顯差異,推測屬相同性質、經歷相同構造事件的單一構造單元。西側魚卡河地區榴輝岩主要、微量元素和Nd-Hf同位素特徵可分兩類:(1)低TiO2榴輝岩反映具貧瘠地函岩漿特徵,原岩和正常型中洋脊玄武岩的特徵相似;(2)高TiO2榴輝岩可能源自於富集岩漿地函,原岩屬富集型中洋脊玄武岩或大陸洪流玄武岩,推測形成環境遠離典型大洋中脊,為隱沒帶上盤增積岩體的活動性大陸邊緣環境。錫鐵山地區“主要類型”榴輝岩微量元素和Nd同位素顯示具富集型中洋脊玄武岩和大陸型玄武岩原岩特徵,形成於張裂地殼環境。根據榴輝岩和片麻岩“原地變質”構造關係,推測原岩可能為入侵初期張裂大洋的地函柱物質,為大陸地殼物質來源。雖然,柴北緣高壓/超高壓變質帶具典型大陸隱沒成因特徵,但部分研究發現柴北緣地區榴輝岩可能屬早古生代海洋地殼隱沒產物,而本研究則認為上述兩種不同構造成因的榴輝岩皆存在於柴北緣高壓/超高壓變質帶中。由於具海洋地殼親源性榴輝岩原岩較少出露在大陸型超高壓變質帶中,有別於典型隱沒-碰撞造山帶,因此柴北緣地區的大地構造和動力學機制仍有待商榷。
祁連造山帶於早古生代(同時性)在中國西北地區祁連地塊南北兩側(異地性)發生增生造山作用(北祁連高壓/低溫變質帶)和碰撞造山作用(柴北緣高壓/超高壓變質帶)而構成複合型造山帶。依據上述兩變質帶研究成果,除可重新建構祁連-柴達木地區造山過程,同時制約造山性質、造山類型及造山機制,重新詮釋中國大陸西北地區青藏高原北緣的大陸地殼增生和地塊重組的地質意義。
SUMMARY
The NW-SE trending North Qilian and North Qaidam metamorphic belts bounding on the South Qilian Block in NW China. These two metamorphic belts have been thought to be the results of two unrelated subduction events. The oceanic affinity of the high-pressure (HP) eclogites from North Qilian HP metamorphic belt indicates that the North Qilian metamorphic belt is a typical deep oceanic subduction belt. In contrast, the UHP eclogites from the North Qaidam metamorphic belt are mainly metamorphosed from E-MORB continental protoliths, implying that the North Qaidam metamorphic belt is related to deep continental subduction belt. Understanding the genetic relationship between these two belts is not straightforward, the architecture and evolution of the North Qilian and North Qaidam metamorphic belt is still controversial. In this study, new major and trace element and Sr-Nd-Hf isotopic compositions of eclogites and associated igneous rocks from two contrasting metamorphic belt were used to identify the protolith nature, and to comprehend the geochemical variations. These results provide further constraints to understand the tectonic environments and evolution histories in NW China.
INTRODUCTION
The subparallel WNW-trending North Qilian and North Qaidam metamorphic belts are located in the northern and southern margins of the Qilian Block (northwestern China), respectively. The equilibrium P-T conditions indicate that the Qilian eclogites were metamorphosed at high-pressure (HP) conditions, whereas ultrahigh-pressure (UHP) metamorphism has been proposed for the Qaidam eclogites. The North Qilian metamorphic belt is primarily composed of HP eclogite, blueschist, ophiolite complex, and accretionary mélanges. These rock types were formed within an Early Paleozoic accretionary wedge as the results of subduction of the oceanic crust. They had been considered as one of the best preserved HP/LT metamorphic belts in China. In contrast, the North Qaidam metamorphic belt mainly consists of UHP eclogite, garnet peridotite, HP granulite, orthogneiss, and paragneiss. The field occurrence, petrological evidence and geochronological results demonstrate that it was resulted from the deep continental subduction. Understanding the genetic relationship between these two belts is not straightforward; typically these two metamorphic belts have been regarded as the results of two unrelated northward subduction events (e.g. Yang et al., 2002). For this region, previous studies had used petrological, geochemical and geochronological constraints to propose various tectonic models. However, the architecture and evolution of the early Paleozoic North Qilian and North Qaidam metamorphic belt is still controversial. Furthermore, the inferences on protolith characteristics were derived from limited trace element database and have not been verified by isotope data, imposing uncertainties on the associated tectonic models. To decipher the relationship between the two metamorphic belts, major and trace element abundances, as well as Sr, Nd, and Hf isotopic compositions of eclogites and associated igneous rocks were used to identify the protolith nature and constrain the tectonic architecture during early Paleozoic.
MATERIALS AND METHODS
More than 70 eclogites and associated igneous rocks were collected from North Qilian and North Qaidam metamorphic belts. Abundances of ten major oxides were determined by X-ray fluorescence (XRF). For trace elements, abundances of 14 rare earth elements (REE), 5 high field strength elements (HFSE), and 9 other trace elements were determined using an inductively coupled plasma mass spectrometer (ICP-MS). Sr-Nd isotope analyses were carried out using a Thermal ionization mass spectrometry (TIMS) and Hf isotope measurement was performed on a multiple collector mass inductively coupled plasma mass spectrometry (MC-ICP-MS).
RESULTS AND DISCUSSION
(1) The isotopic compositions of Dongcaohe gabbronorites differ from the Pacific and Atlantic MORB for lowerεNd(t) (4.5~5.2), higher 207Pb/204Pbi (15.43~15.43) and 208Pb/204Pbi (36.78~36.94) ratios at a given 206Pb/204Pbi (17.12~17.22) value. These isotope characteristics are similar to that of modern Indian MORB and Paleo- and Neo-Tethyan ophiolites. It leads to conclude that the ancient oceanic mantle beneath the North Qilian Mountains belongs to the Tethyan tectonic domain. The constituent materials of the North Qilian metamorphic belt were related to the rifting of Gondwana continent rather than the Paleo-Asian oceanic suture system.
(2) The Niuxinshan granites with high alkaline and low Na2O contents have whole-rock ASI index and A/CNK ratio close to 1, reflecting the characteristics of I-type granitoids. These samples show LREE and LILE enrichments and pronounced negative Eu, Ba, Nb, Sr, and Ti anomalies. The 87Sr/86Sr(460) (0.704725~0.706973) andεNd(460) (-2.0~-4.5) are characteristics of magmas generated at island-arc or active continental margin. Zircon SHRIMP U-Pb dating for two granitic samples yields similar results of 461±6 and 453±13 Ma representing the Middle-Late Ordovician intrusion age. These results imply that the Niuxinshan granite intrusions may be formed by southward subduction of the Qilian oceanic plate under the Qilian block during early Paleozoic era.
(3) The geochemical and isotopic compositions indicate that the eclogitic rocks in North Qilian HP/LP metamorphic belt is neither restricted to a single source nor confirmed to typical oceanic lithosphere. We favor a tectonic model involved diverse protolith provenances, including BAB (Group 1), E-MORB (Group 3), arc volcanic rocks (Group2) and continental crust (Group 4). These results imply that the protoliths of North Qilian eclogites may be formed in the accretionary prism at convergent margin of Qilian block by a southward subduction of the Qilian oceanic.
(4) In the North Qaidam, the protoliths of eclogites have chemical characteristics of N-MORB, E-MORB and arc signatures in both North and South Dulan sub-belts. Our geochemical data combined with the published metamorphic P-T conditions and geochronological results indicate that these two distinguished sub-belts share a common UHP metamorphism history and protolith characteristics. Thus, they should be considered as a single tectonic unit.
(5) Yukahe eclogites in the North Qaidam can be divided into low-TiO2 and high-TiO2 groups. The low-TiO2 eclogites exhibit relatively low TiO2 (most <1.0 wt%) and trace element contents but high Nd-Hf isotopic ratios, which can be interpreted as characteristics of gabbroic cumulates from oceanic crust. In contrast, the high-TiO2 eclogites have high TiO2 (most >1.0 wt%) and trace element contents but un-radiogenic Nd-Hf isotopic ratios, suggesting that their protoliths are segments of continental flood basalts.
(6) The Xitieshan eclogites in the North Qaidam with un-radiogenic 143Nd/144Nd ratios (0.512082~0.512188) at the time of metamorphism, ~490 Ma, indicate that they are derived from E-MORB or continental basalt protoliths. The REE and HFSE abundances of the four “main group samples” are comparable to those of E-MORB and plume-related continental basalts associated with the opening of ocean basins. The plume-related continental basalts associated with the formation of ocean basins can readily explain the geochemical characteristics of the Xitieshan eclogites and the “in-situ” eclogite-gneiss relationship.
CONCLUSION
The continental protoliths for the UHP Qadiam eclogites and oceanic origins of the HP Qilian eclogites lead to a conclusion that a composite orogen was synchronously developed by collision orogeny and subduction-accretion orogeny at two side of Qilian block, respectively. The relationship between the North Qaidam and North Qilian metamorphic belts established in this study provides the detailed information for understanding the tectonic evolution history of central-south Asia during Early Paleozoic time.
中文部份
于勝堯,張建新,李金平(2009)柴北緣都蘭高壓麻粒岩的變質演化及形成的動力學背景。岩石學報,25(9):2224–2234。
于勝堯,張建新(2010)柴北緣都蘭地區片麻岩的起源及形成時代:鋯石U-Pb年代學,REE和Hf同位素的證據。岩石學報,26(7):2083–2098。
王荃和劉雪亞(1976)我國西部祁連山區的古海洋地殼及其大地構造意義。地質科學,1:43–55頁。
王荃、劉雪亞(1981)祁連山加里東期的多旋迴雙變質帶。地質出版社,92–101頁。
王雲山、陳基娘(1987a)青海省及比鄰地區變質地帶與變質作用。中華人民共和國地質礦產部地質專報,第6號。
王雲山、陳基娘(1987b)青海省及其毗鄰地區變質地質及變質作用。北京,地質出版社,268頁。
王惠初、袁桂邦、辛後田、郝國傑、鄭健康、張寶華(2001)柴北緣綠梁山地區榴輝岩的產狀及其成因意義初探。中國地質,3(4):22–28頁。
王國燦、王青海、簡平、朱雲海(2004)東昆侖前寒武紀基底變質岩系的鋯石SHRIMP年齡及其構造意義。地學前緣,11(4):481–490頁。
史仁燈、楊經綏、吳才來、Wooden, J.(2004a)北祁連玉石溝蛇綠岩形成於晚震旦世的SHRIMP年齡證據。地質學報,78(5):649–657頁。
史仁燈、吳才來、楊經綏、Tsuyoshi, I.、Takafumi, H.(2004b)柴北緣超高壓變質帶中的島弧火山岩。地質學報,78(1):53–64頁。
付國民、李永軍、石京平(2001)柴達木第三紀轉換裂陷盆地形成演化及動力學。沉積與特提斯地質,21(4):34–41頁。
左國朝、吳漢泉(1997) 北祁連中段早古生代雙向俯衝─碰撞造山模式剖析。地球科學進展,12:315–323頁。
左國朝、劉寄陳(1987)北祁連早古生代大地構造演化。地質科學,1:14–24頁。
左國朝、張淑玲、程建生、築彥學、王彥斌、吳漢泉(1995)祁連地區蛇綠岩帶劃分及其構造意義。地質科學,4:1–10頁。
任紀舜主編(1997)中國及鄰區大地構造圖(1:5000000),北京:地質出版社。
宋述光(1997)北祁連山俯衝雜岩帶的構造演化。地球科學進展,12(4):352–365頁。
宋述光、張立飛、牛耀齡、宋彪、張貴賓、王乾杰(2004)北祁連山榴輝岩鋯石SHRIMP定年及其構造意義。科學通報,6:592–595頁。
宋述光、楊經綏(2001)柴達木盆地北緣都蘭地區榴輝岩中透長石+石英包裹體:超高壓變質作用的證據。地質學報,75(2):180–185頁。
宋述光、張聰、李獻華、張立飛(2011)柴北緣超高壓帶中錫鐵山榴輝岩的變質年代。岩石學報,27(4):1191–1197頁。
李春昱、劉仰文、朱寶清、馮益民、吳漢泉(1978)秦嶺及祁連山構造發展史,國際交流地質學術論文集(1),北京:地質出版社,174–178頁。
李懷坤、陸松年、相振群、周紅英、李惠民、劉敦一、宋彪、鄭健康、顧瑛(2007)北祁連山西段北大河岩群碎屑鋯石 SHRIMP U–Pb年代學研究。地質評論,53(1):132–141頁。
李懷坤、陸松年、趙風清(1999)柴達木北緣新元古代重大地質事件年代格架。現代地質,13(2):224–225頁。
李俊健(2006)內蒙古阿拉善地塊區域成礦系統。博士學位論文。北京:中國地質大學(北京)。
肖序常、陳國銘、朱志直(1978)祁連山蛇綠岩帶的地質構造意義。地質學報,4:281–295頁。
青海省地質礦產局。1991。青海省區域地質志。北京:地質出版社。
吳才來、楊經綏、李海兵、史仁燈(2001)祁連南緣嗷嘮山花崗岩SHRIMP鋯石年齡及其地質意義。岩石學報,17(2):215–221頁。
吳才來、楊經綏、許志琴、Joseph,L.W.、Trevor, I.、李海兵、史仁燈、孟繁聰、陳松永、Harold, P.、Anders, M.(2004)柴達木盆地北緣古生代超高壓帶中花崗質岩漿作用。地質學報,78(5):658–674頁。
吳漢泉(1980)東秦嶺和北祁連的藍閃片岩。地質學報,3:195–207頁。
吳漢泉(1982)北祁連高壓變質帶的岩石學和礦物學。中國地質科學院西安地質礦產研究所,4:5–19頁。
吳漢泉(1987)北祁連山多矽白雲母礦物學和多型特徵以及對K-Ar年齡的思考。中國地質科學院西安地質礦產研究所所刊,第15期,33–46頁。
吳漢泉、宋述光(1992)北祁連山兩種藍閃片岩及其構造特徵。現代地質研究文集(上)。南京,南京大學出版社,74–80頁。
洪于喬(2009)綠島火山岩化學成分及鍶-釹-鉿同位素在岩漿作用及源區特性之意函。國立成功大學,碩士論文,1–79頁。
耿元生、王新社、沈其韓、吳春明(2006)內蒙古阿拉善地區前寒武紀變質基底阿拉善群的再厘定。中國地質,33:138–145頁。
耿元生、王新社、沈其韓、吳春明(2007)內蒙古阿拉善地區前寒武紀變質岩系形成時代的初步研究。中國地質,34:251–260頁。
相振群、陸松年、李懷坤、李惠民、宋彪、鄭健康(2007)北祁連西段熬油溝輝長岩的鋯石SHRIMP U–Pb年齡及地質意義。地質通報,26:1686–1691頁。
邢裕盛(1989)中國地層3-中國的上前寒武系,北京:地質出版社。
許志琴、徐惠芬、張建新、李海兵、朱志直、曲景川、陳代璋、徐金祿、楊開春(1994)北祁連走廊南山加里東俯沖雜岩增生地體及其動力學。地質學報,68(1):1–15頁。
曹國強、陳世悅、徐鳳銀、彭德華、袁文芳(2005)柴達木盆地西部中-新生代沉積構造演化。中國地質,32(1):33–40頁。
孟繁聰、張建新、楊經綏、許志琴(2003)柴北緣錫鐵山榴輝岩的地球化學特徵。岩石學報,19(3):435–442頁。
孟繁聰、張建新、楊經綏、許志琴(2005)柴北緣錫鐵山早古生代HP/UHP變質作用後的構造熱事件-花崗岩和片麻岩的同位素與岩石地球化學證據。岩是學報,21(1):45–56頁。
孟繁聰、張建新、郭春滿、李金平(2010)大岔大坂MOR型和SSZ型蛇綠岩對北祁連洋的制約。岩石礦物學雜誌,29(5):453–466頁。
曾建元(1998)青海省北祁連山中段百經寺蛇綠岩之岩石學研究。國立成功大學,碩士論文,1–95頁。
曾建元(2007)北祁連東草河蛇綠岩。國立成功大學,博士論文,1–123頁。
袁桂邦、王惠初、李惠民、郝國杰、辛后田、張寶華、王青海、田琪(2002)柴北緣綠梁山地區輝長岩的鋯石U–Pb年齡及意義。前寒武紀研究進展,25(1):37–40頁。
夏林圻、夏祖春、徐學義(1987)細碧角斑質火山岩若干問題。中國地質科學院西安地質礦產研究所,17:1–30頁。
夏林圻、夏祖春、徐學義(1992)北祁連早古生帶加里東旋回活動大陸邊緣溝-弧-盆體系海相火山活動。“七.五”地質科技重要成果學術交流會論文選集。
夏林圻、夏祖春、徐學義(1995a)北祁連山構造—火山岩漿演化動力學。西北地質科學,16(1):1–27頁。
夏林圻、夏祖春、徐學義(1995b) 北祁連山元古代末—寒武紀海相火山作用與成礦作用的關係。西北地質科學,16(1):28–37頁。
夏林圻、夏祖春、徐學義(1996)北祁連山海相火山岩岩石成因。北京,地質出版社,共153頁。
賴紹聰、鄧晉福、趙海玲(1996)柴達木北緣古生代蛇綠岩及其構造意義。現代地質,10:18–28頁。
郝國傑、陸松年、李懷坤、鄭建康(2001)柴北緣沙柳河榴輝岩岩石學及年代學初步研究。前寒武紀研究進展,24(1):154–162頁。
郭春滿(2005)中國西北部柴達木盆地北緣榴輝岩之地球化學特性。國立成功大學,碩士論文,1–213頁。
郭進京(2000)柴北緣錫鐵山地區灘間山群構造變形分析。前寒武紀研究進展,23(3):147–152頁。
張之孟(1989)北祁連的高壓地溫變質作用。中國地質科學探索。北京,地質出版社,273–295頁。
張振法、李超英、牛穎智(1997)阿拉善-敦煌陸塊的性質、範圍及其構造作用和意義。內蒙古地質,2:1–14頁。
张雪亭,吕惠庆,陈正兴,張寶華,李福祥,朱躍升,李朝蘭,王彥(1999)柴北缘造山带沙柳河地区榴辉岩相高压变质岩石的发现及初步研究。青海地质,2:1–13頁。
張建新、許志琴(1995)北祁連中段加里東俯衝-增生雜岩/火山弧帶及其變形特徵。地球科學,2:154–163頁。
張建新、許志琴、陳文、徐惠芬(1997)北祁連中段俯沖雜岩、火山弧的時代探討。岩石礦物學雜誌,16:112–119頁。
張建新、許志琴、徐惠芬、李海兵(1998)北祁連加里東期俯衝-增生楔結構及動力學。地質科學,33(3):209–299頁。
張建新、楊經綏、許志琴、張澤明、陳文、李海兵(2000)柴北緣榴輝岩的峰期和退變質年齡:來自U–Pb及Ar–Ar同位素測定的證據。地球化學,29(3):217–222頁。
張建新、孟繁聰、萬渝生、楊經綏、董國安(2003a)柴達木盆地南緣金水口群的早古生代構造熱事件:鋯石U-Pb SHRIMP年齡證據. 地質通報,22(6):397–404頁。
張建新、孟繁聰、楊經綏(2004)柴北緣西段榴輝岩相的變質泥質岩: 榴輝岩與圍岩“原地”關係的證據. 中國科學D,34(9):825–834頁。
張建新、孟繁聰、楊經綏 (2005)柴北緣魚卡河榴輝岩的PT演化歷史. 岩石礦物學雜誌,24(4):245–254頁。
張建新、孟繁聰、Mattinson, C.G.(2007)南阿爾金-柴北緣高壓超高壓變質帶研究進展、問題及挑戰。高校地質學報,13(3):1–11頁。
張建新、孟繁聰、李金平、Mattinson, C.G.(2009)柴達木北緣榴輝岩中的柯石英及其意義。科學通報,54(5):618–623頁。
張建新、萬渝生、孟繁聰、楊經綏、許志琴(2003b)柴北緣夾榴輝岩的片麻岩(片岩)地球化學、Sm–Nd和U–Pb同位素研究---深俯沖的前寒武紀變質基底。岩石學報,19(3):443–451頁。
張雪亭、呂惠庆、陳正興、張寶華、李福祥、朱躍升、李朝蘭、王彥(1999)柴北緣造山帶沙柳河地區榴輝岩相高壓變質岩石的發現及初步研究。青海地質,2:1–13頁。
張聰、張立飛、孫勇、陳丹玲、王焰、羅金梅(2009)柴北緣錫鐵山一帶榴輝岩的岩石學特徵及退變質PT軌跡。岩石學報,25:2247–2341頁。
張旗、周國慶著(2001)中國的蛇綠岩。北京科學出版社:60–66頁。
張旗、周國慶、王焰(2003)中國蛇綠岩的分布時代及其形成環境。岩石學報19(1):1–8頁。
陳雋璐、陳有倉、李海平、趙選社(2002)祁連與北秦嶺結合部位隴山岩群與秦嶺岩群對比討論,陜西地質,20(2):39–49頁。
陳丹玲、孫勇、劉良、張安達、林慈鑾(2007)柴北緣魚卡河榴輝岩的超高壓變質年齡:鋯石LA-ICP-MS微區定年。中國科學(D輯)37(1):279–287頁。
陳丹玲、孫勇、劉良(2008)柴北緣野馬灘超高壓榴輝岩中副片麻岩夾層的鋯石U–Pb定年及其地質意義。岩石學報,24(5):1509–1067頁。
馮益民、何世平(1995a)北祁連蛇綠岩的地質地球化學研究。岩石學報,11:125–146頁。
馮益民、何世平(1995b)祁連山及其鄰區大地構造基本特徵-兼論早古生代海相火山岩的成因環境。西北地質科學,16(1):92–103頁。
馮益民、何世平(1996)祁連山大地構造與造山作用。北京,地質出版社,135頁。
馮益民、曹宣鋒、張二朋、胡雲緒、潘曉萍、楊軍录、賈群子、李文明(2003)西秦嶺造山帶的演化、構造格局和性質,西北地質,36(1):1–10頁。
潘桂棠、肖慶輝、陸松年、鄧晉福、馮益民、張克信、張智勇、王方國、邢光福、郝國杰、馮艷芳(2009)中國大地構造單元劃分。中國地質,36:1–28頁。
翟光明、徐鳳銀、李建青(1997)重新認識柴達木盆地,力爭油氣勘探獲得新突破。石油學報,18(2):1–7頁。
翟明國、卞愛國(2000)華北克拉通新太古代末超大陸拼合及古元古代末-中元古代裂解。中國科學(D):地球科學,30(增刊):129–137頁。
趙文軍、雒曉剛(2008)祁連山西段金佛寺花崗岩基的地球化學特徵及成因探討。甘肅地質,11(5):30–34頁。
馬文璞 (1992) 區域構造解析-方法理論和中國板塊構造,北京:地質出版社,308頁。
陸松年,王惠初,李懷坤,袁桂邦,辛後田,鄭健康(2002)柴達木盆地北緣“達肯大阪群”的再厘定。地質通報,21(1):19–23頁。
楊經綏、許志琴、李海兵、吳才來、崔軍文、張建新、陳文(1998)我國西部柴北緣地區榴輝岩的發現及潛在的地質意義。科學通報,43(14):1544–1549頁。
楊經綏、許志琴、宋述光、吳才來、史仁燈、張建新、萬渝生、李海兵(2000)青海都蘭地區榴輝岩的發現及對中國中央造山帶高壓-超高壓變質帶研究的意義。地質學報,74(2):156–168頁。
楊經綏、張建新、孟繁聰、史仁燈、吳才來、許志琴、李海兵、陳松永(2003)中國西部柴北緣---阿爾金的超高壓變質榴輝岩及其原岩性質探討。地質前緣,10(3):291–314頁。
楊建軍、朱紅、鄧晉福、周天禎、賴紹聰(1994)柴達木北緣石榴石橄欖岩的發現及其意義。岩石礦物學雜誌,13(2):97–104。
英文部分
Aїt-Djafer, S., Ouzegane, K., Paul-Liégeois, J., Kienast, J. R., 2003. An example of post-collision mafic magmatism: the gabbro-anothosite layered complex from the Tin Zebane area (western Hoggar, Algeria). Journal of African Earth Sciences, 37: 313–330.
Altherr, R., Henjes-Kunst, F., Baumann, A., 1990. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea: constraints from Sr, Pb and Nd isotopes, Earth and Planetary Science Letters, 96: 269–286.
Bach, W., Peuker-Ehrenbrink, B., Hart, S. R., Blusztajn, J. S., 2003. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B - Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochemistry Geophysics Geosystems, 4, Q08904, doi: 10.1029/2002GC000419.
Batiza, R., Niu, Y., Zayac, W.C., 1990. Chemistry of seamounts near the East Pacific Rise: implications for the geometry of subaxial mantle flow. Geology, 18: 1122–1125.
Batiza, R., Smith, T.L., Niu, Y.1989. Geologic and petrologic evolution of seamounts near the EPR based on submersible and camera study. Marine Geophysical Research, 11: 169–236.
Becker, H., Jochum, K. P., Carlson, R. W., 1999. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chemical Geology, 160: 291–308.
Becker, H. Jochum, K.P., Carlson, R.W., 2000. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chemical Geology, 163: 65–99
Bernard-Griffiths, J., Cornichet, J., 1985. Origin of eclogites from South Brittany, France: a Sm–Nd isotopic and REE study. Chemical Geology, 52: 185–201.
Benoit M., Polvé, M., Ceuleneer, G., 1996. Trace element and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chemical Geology, 134: 199–214.
Black, L.P., Kamo, S.L., Allen, C.M., John N.A., Davis, D.W., Korsch, R.J., Foudoulis C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology, 200: 155–170.
Bloomer, S.H., Meyer, P.S., Dick, H.J.B., Ozawa, K., Natland, J.H., 1991. Textural and mineralogicalvariations in gabbroic rocks from Hole 735B, in Von Herzen, R.P., Robinson, P.T., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results 118: College Station, Texas, Ocean Drilling Program, 21–39.
Brenan, J. M., Watson, E. B., 1991. Partitioning of trace elements between olivine and aqueous fluid at high P-T conditions: Implacation for the effect of fluid composition on trace elements transport. Earth and Planetary Science Letters, 107: 672–688.
Broska, I., Williams, C.T., Uher, P., Konečný, P., Leichmann, J., 2004. The geochemistryof phosphorus in different granite suites of the Western Carpathians, Slovakia:the role of apatite and P-bearing feldspar. Chemical Geology, 205: 1–15.
Bucher, K., Fazis, Y., Capitani, C., Grapes, R., 2005. Blueschists, eclogites, and decompression assemblages of the Zermatt-Saas ophiolite: high-pressure metamorphismof subducted Tethys lithosphere.AmericanMineralogist, 90: 821–835.
Campbell, I.H., Griffiths, R.W., 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99: 79–93.
Carswell, D.A., Compagnoni, R., 2003a. Introduction with review of thedefinition, distribution and geotectonic significance of ultrahigh pressure metamorphism. In: Carswell, D.A., Compagnoni, R. (Eds.), EMU Notes in Mineralogy, Eötvös University Press, 5: 3–9.
Carswell, D.A., Cuthbert, S.J., 2003b. Ultrahigh pressure metamorphism in the Western Gneiss Region of Norway. In: Carswell,D.A.,Compagnoni, R. (Eds.), EMU Notes in Mineralogy, Eötvös University Press, 5: 51–73.
Casado, O., Gebauer, D., Schafer, H.J., Ibarguchi, J.I.G., Peucat, J.J., 2001. A single Devonian event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics, 332: 359–385.
Castillo, P.R., 1988. The Dupal anomaly as a trace of upwelling lower mantle. Nature, 336: 667–670.
Cebriá, J.M., López-Ruiz, J., Doblas, M., Martins, L.T., Munha, J., 2003. Geochemistry of the Early Jurassic Messejana-Plasencia dyke (Portugal-Spain); Implications on the origin of the Central Atlantic Magmatic Province. Journal of Petrology, 44: 547–568.
Clift, P.D., Hartley, A.J., 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology, 35: 503–506.
Clift, P.D., MacLeod, C.J., 1999. Slow rates of tectonic erosion estimated from the subsidence and tilting of the Tonga Forearc Basin. Geology 27, 411–414.
Clift, P.D., Pecher, I., Kukowski, N., Hampel, A., 2003. Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics, 22: 1023. http://dx.doi.org/10.1029/2002TC001386.
Coffin, M.F., Eldholm, O. 1994. Large igneous provinces: crustal structure, dimension, and external consequences. Review of Geophysics, 32: 1–36.
Compston, W., Williams, I. S., Meyer C., 1984. U-Pb gesochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Proceedings of the 14th Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research 89: B525–534.
Chappell, B.W., 1999. Aluminium saturation in I and S-type granites and the char-acterization of fractionated haplogranites. Lithos, 46: 535–551.
Chappell, B.W., White, A.J.R. 1974. Two contrasting granite types. Pacific Geology, 8: 173–174.
Chappell, B.W., White, A.J. R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48: 489–499.
Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU and EM: The french polynesian connection. Earth Planetary Science Letter, 110: 99–109.
Chen, D.L., Liu, L., Sun, Y., Liou, J.G., 2009. Geochemistry and zircon U–Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35: 259–272.
Chen, J.F., Jahn, B.M. 1998. Crustal evolution of southeastern China: Nd and Sr iso-topic evidence. Tectonophysics, 284: 101–133.
Chen, L., Sun, Y., Pei, X.Z., Feng, T., Zhang, G.W., 2004. Comparasion of eastern Paleo–Tethyan ophiolites and its geodynamics significance–Evidence from Dur’ngoi ophiolite. Science in China(Series D–Earth Science), 47(4): 378–384.(in Chinese with English abstract)
Choi, S.H., Mukasa, S.B., Kwon, S.T., Andronikov, A.V., 2006. Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chemical Geology, 232: 134–151.
Chopin, C., 2003. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth and Planetary Science Letter, 212: 1–14.
Chung, S.L., Sun, S.S., Crawford, A.J., 2001. Indian Ocean type convecting mantle underlies east Asia: a consequence of Gondwana breakup and reassembly? Western Pacific Earth Sciences, 1: 1–18.
Coleman, R.G., Wang, X.M., 1995. Overview of the geology and tectonics of UHPM. In: Coleman, R.G., Wang, X.M. (Eds.), Ultrahigh Pressure Metamorphism. Cambridge University Press, 1–32.
Dai, J.G., Wang, C.S., Hébert, R., Li, Y.L., Zhong, H.T., Guillaume, R., Bezard. R., Wei, Y.S., 2011. Late devonian OIB alkaline gabbro in the Yarlung Zangbo suture: Remnants of the Paleo–tethys? Gondwana Research, 19: 232–243.
Danyushevsky, L. V., Perfit, M. R., Eggins, S. M., Falloon, T. J. 2003. Crustal origin for coupled 'ultra-depleted' and 'plagioclase' signatures in MORB olivine-hosted melt inclusions: evidence from the Siqueiros Transform Fault, East Pacific Rise. Contributions to Mineralogy and Petrology, 144: 619–637.
Dilek, Y., Moores, E. M., Elthon, D., Nicolas, A., 2000. Ophiolites and ocean crust: new Insights from field studies and the ocean drilling program. Geological Society of America, Special Paper: 342–552.
Dilek, Y., Newcomb, S., eds. 2003. Ophiolite concept and evolution of geological thought. geological society of America, special paper, 373–504.
Depolo, D.J., 1988. Neodymium isotope geochemistry: An introduction. 1–187. Berlin Heidelberg. Springer-Verlag.
DePaolo, D.J., Daley, E.E., 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169: 157–185.
Dewey, J.F., Shackleton, R., Chang, C.F. and Sun, Y. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Traansactions of the Royal Society, London, A327: 379–413
Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite gene-sis and crustal growth via slab melting: Archean to modern comparisons. Journalof Geophysical Research 95 (B13): 21503–21521.
Dubois-Côté, V., Héberta, R., Dupuisa, C., Wangb, C. S., Lib, Y. L., Dostalc, J., 2005. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology, 214: 265–286.
Dupre, B., Allegre, C.J., 1983. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303: 142–146.
Eggin, S.M., Woodhead, J.D., Kinnsly, L.P.J., 1997. A simple method of the precise Determination of ≥ 40 trace elements in geological samples by ICP-MS using Enriched isotope internal standardization. Chemical Geology, 134: 311–326.
Enrst, W.G., Liou, J.G., 1995. Contrasting plate-tectonic styles of the Qiling–Daibei–Sulu and Franciscan metamorphic. Geology, 23(4): 353–356.
Ernst, W.G., Maruyama, S., Wallis, S., 1997. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proceedings of the National Academy of Sciences of the United States of America, 94: 9532–9537
Ernst, W. G., 2001. Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices—implications for arcs and continental growth. Physics of the Earth and Planetary Interiors 127: 253–275.
Faure, G., 1986. Principle of isotope geology. 2nd. 1–589. Canada. JohnWiley andSons, Inc.
Feng, Y.M., 1997. Investigatory summary of the Qilian orogenic belt, China: History, presence and prospect. Advance in Earth Sciences, 12(4): 307–314.(in Chinese with English abstract)
Feng, Y.M., 1998. Allochthones along west section of the North Qilian orogenic belt. Geological Review, 44: 365–371.(in Chinese with English abstract).
Feng, Y.M., He, S.P., 1996. Research for geology and geochemistry of several ophiolites in the North Qilian Mountains, China. Acta Petrologica Sinica, 11: 125–146.(in Chinese with English abstract)
Flower, M.F.J., Tamaki, K., Hoang, N., 1998. Mantle extrusion: model for dispersed volcanism and DUPAL–like asthenosphere in east Asia and western Pacific. In: Flower, M.F.J., Chung, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle Dynamics and Plate Interactions in East Asia, Am. Geophys. Union Geodyn. Ser., 27: 67–88.
Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64: 933–938.
Frey, F. A., Wise, W. S., Garcia, M. O., West, H., Kwon, S.T., Kennedy, A., 1990. Evolution of Mauna Kea volcano, Hawaii: petrologic and geochemical constraints on postshield volcanism. Journal of Geophysical Research, 95: 1271–1300.
Frost, B.R., Barnes C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42: 2033–2048.
Frost, B.R., Frost, C.D., 2008. A geochemical classification for fledspathic igneous rocks. Journal of Petrolgy, 49: 1955–1969.
Gaffney, A. M., Nelson, B. K., Blichert-Toft, J., 2005. Melting in the Hawaiian plume at 1-2 Ma as recorded at Maui Nui: The role of eclogite, peridotite, and source mixing. Geochemistry Geophysics Geosystems, 6: Q10L11, doi: 10.1029/2005GC000927.
Gehrels, G.E., Yin, A., Wang, X.F., 2003a. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysics Research, doi: 10.1029/2002JB001876.
Gehrels, G.E., Yin, A., Wang, X.F., 2003b. Detrital zircon geochronology of the northeastern Tibetan Plateau. Geological Society of America Bulletin, 115: 881–896.
Green, T. H., Adam, J., 2002. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650-700°C. European Journal of Mineralogy, 15: 815–830.
Guin, C., Ricard, Y., 1999. HP/LT metamorphism and dynamic of the accretionary wedge. Geophysics Journal International, 136: 620–628.
Hajash, A., 1984. Rare earth element abundances and distribution patterns in hydrothermally altered basalts: experimental results. Contribution to Mineralogy and Petrology, 85: 409–412
Hamelin, B., Allègre, C.J., 1985. Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South–West Indian Ridge. Nature, 315: 196–199.
Hamelin, B., Dupré B., Allègre, C.J., 1986. Pb–Nd–Sr isotopic data of Indian Ocean Ridges: New evidence of large-scale mapping of mantle hetegeneities. Earth Planetary Science Letter, 78: 104–114.
Hart, S.R., 1984. A large scale isotope anomaly in the southern hemisohere mantle. Nature, 309: 753–757.
Hart, S.R., 1988. Heterogeneous mantle domains: signatures, genesis, and mixing chronologies. Earth Planetary Science Letter, 90: 273–296.
Hauri, E. H., 1996. Major element variability in the Hawaiian mantle plume. Nature, 382: 415–419.
Hamelin,C., Dosso, L., Hanan, B., Jean-Alix Barrat, J., Ondréas, H., 2010. Sr-Nd-Hf isotopes along the Pacific Antarctic Ridge from 41 to 53°S. Geophysical Research Letters, 37 , issue10, DOI: 10.1029/2010GL042979
Herve, F., Fanning, C. M., 2003 Early Cretaceous subduction of continental crust at the Diego de Almargo archipelago, southern Chile. Episodes, 26(4): 285-289.
Herzig, C.T., Jacobs, D.C., 1994., Cenozoic volcanism and two stage extension in the Salton Trough, Southern California and northern Baja California. Geology, 22: 991–994.
Hoang, N.T., Flower, M.F.J., Carlson, R.W., 1996. Major, trace element, and isotopic compositions of Vietnamese basalts: interaction of enriched mobile asthenosphere with the continental lithosphere? Geochimica et Cosmochimica Acta, 60: 4329–4351.
Hong, D.W, Xie X.L., Zhang, J.S., 1999. An exploration of the composition, nature and evolution of mid-lower crust in south China based on the Sm-Nd isotopic data of granites. Geological Journal of China University, 5(4): 361—371. (in Chinese with English abstract)
Hess, H. H., 1965. Mid-ocean ridges and tectonics of the sea floor, in Whittard, M. F. andBradshaw, R. eds., Submarine Geology and Geophysics: Proceedings of the 17th Symposium of the Colston Research Society: London, Butterworths: 317–334.
Hofmann, A.W., 1988. Chemical differentiation of the Earth: Relationship between mantle, continental crust and oceanic crust. Earth Planetary Science Letter, 90: 297–314.
Hou, Q.Y., Zhao, Z.D., Zhang, H.F., Zhang, B.R., Chen, Y.L., 2006a. Indian Ocean–MORB–type isotopic signature of Yushigou ophiolite in North Qilian Mountains and its implications. Science in China: Series D Earth Sciences, 49(6): 561–572.
Hou, Q.Y., Zhao, Z.D., Zhang, H.F., Zhang, L., Chen, Y.L., 2006b. On the boundary of Tethyan tectonic domain on northeastern margin of the Tibetan Plateau. Acta Petrologica Sinica, 22(3): 567–577.(in Chinese with English abstract)
Huang, S., Frey, F. A., 2005. Recycled oceanic crust in the Hawaiian plume: evidence from temporal geochemical variations within the Koolau Shield. Contributions to Mineralogy and Petrology, 149: 556–575.
Huene, V., Scholl, R. D.W., 1991. Observations at convergent margins concerning sediment subduction, subduction erosion and the growth of continental crust. Review of Geophysics, 26(3): 279–316.
Huene, V., Scholl, R. D.W., 1991 Observations at convergent margins concerning sediment subduction, subduction erosion and the growth of continental crust. Review of Geophysics, 26 (3): 279-316.
Hugh, R., 1993. Using geochemical data: Presentation, interpretation. Singapore: Longman Scientific and Technical Limited, 186–187.
Iacumin, M., De Min, A., Piccirillo, E. M., Bellieni, G., 2003. Source mantle heterogeneity and its role in the genesis of late Archaean-Proterozoic (2.7-1.0 Ga) and Mesozoic (200 and 130 Ma) tholeiitic magmatism in the South American Platform. Earth-Science Reviews, 62: 365–397.
Ionov, D.A., Bodinier, J.L., Mukasa, S.B., Zanetti, A., 2002. Mechanisms and sources of mantle metasomatism: Major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. Journal of Petrology, 43, 2219–2259.
Ito, E., White, W.M., Göpel, C., 1987. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology, 62: 157–176.
Jahn, B.M., 1999. Sm-Nd isotope tracer study of UHP metamorphic rocks: implication for continental subduction and collisional tectonics. International Geology Review, 41: 859–885.
Jahn, B.M., Cornichet, J., Cong B., Yui, T.F. 1996. Ultrahigh-εNdeclogites from an ultrahigh-pressure metamorphic terrane of China. Chemical Geology, 127, 61–79.
Jahn, B.M., Chen, B. 2007. Dabieshan UHP Metamorphic Terrane: Sr-Nd-Pb Isotopic Constraint to Pre-metamorphic Subduction Polarity. International Geology Review, 49: 14–29.
Jahn, B.M., Rumble, D., Liou, J. G., 2003. Geochemistry and isotope tracer study of UHP metamorphic rocks. EMU notes in Mineralogy, 5: 365–414.
Jahn, B.M., Liu, X., Yui, T.F., Morin, N., Coz, M.B.L., 2005. High-pressure/ultrahigh- pressure eclogites from the Hong’an block, east-central China: geochemical characterization, isotope disequilibrium and geochronological controversy. Contribution to Mineralogy and Petrology, 149, 499–526.
Janney, P. E., Castillo, P.R., 1997. Geochemistry of Mesozoic Pacific mid-ocean ridge basalt: Constraints on melt generation and the evolution of the Pacific upper mantle. Journal of Geophysical Research, 102: 5207–5229.
John, T., Scherer, E.E., Haasea, K., Schenk, V., 2004. Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth and Planetary Sciences Letter, 227: 441–456.
Johnson, D.M., Hooper, P.R., Conrey, R.M., 1999. XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Advances in X–ray Analysis, 41: 843–867.
Jourdan, F., Bertrand, H., Scharer, U., Blichert-Toft, J., Feraud, G., Kampunzu, A.B., 2007. Major andTrace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana Zimbabwe: Lithosphere vs Mantle Plume Contribution. Journal of Petrology, 48(6): 1043–1077.
Keppler, H., 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237–240.
Klemme, S., Blundy, J. D., Wood, B. J., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66: 3109–3123.
Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist, 68: 277–279.
Knaack, C., Cornelius, S., Hooper, P.1994. Trace element analyses of rocks and minerals by ICP–MS. Washington State University Geology Department Open File Report, Pullman, WA, 18.
Le Maitre, R.W., 2002. Igneous rocks: A classification and glossary of terms. Cambridge University Press, 1–29.
Lee, D.C., Halliday, A. N., Hein, J. R., Burton, K. W., Christensen, J. N., Gunther, D., 1999. Hafnium isotope stratigraphy of ferromanganese crusts, Science, 285: 1052–1054.
Leventhal, J.A., Reid, M.R., Montana, A., Holden, P., 1995. Mesozoic invasion of crust by MORB-source asthenospheric magmas, U.S. Cordilleran interior. Geology, 23: 399–402.
Li, J.P., Zhang, J.X., Yu, S.Y., Sun, G., 2009. Characteristic of eclogites Metasedimentary rocks in the North Qilian Mountains and its geodynamic implications. Acta Geologica Sinica, 83(11): 1666–1685.(in Chinese with English abstract)
Li, X.H., Li, W.X., Li, Z.X., 2007. On the genetic classifications and tectonic implica-tions of the Early Yanshanian granitoids in the Nanling Range of South China.Chinese Science Bulletin, 52: 1873–1885.
Li, X.H., Su, L., Song, B., Liu, D.Y., 2004. SHRIMP U–Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance. Chinese Science Bulletin 49: 420–422.
Li, X.H., Su, L., Chung, S.L., Li, Z.X., Liu, Y., Song, B., Liu, D.Y., 2005. Formation of the Jingchuan ultramafic intrusion and world’s third Largest Ni-Cu sulfide deposit: Associated with the ~825 Ma south China mantle plume? Geochemistry, Geophysics, Geosystems, 6(11): 1–16.
Lissenberg, C.J., Bédard, J.H., van Staal, C.R., 2004. The structure and geochemistry of the gabbro zone of the Annieopsquotch ophiolite, Newfoundland: implications for lower crustal accretion at spreading ridges. Earth and Planetary Science Letters, 229: 105–123.
Lous, J.G., Ernst, W.G., Zhang, R.Y., Tsujimori, T., Jahn, B.M., 2009. Ultrahigh-pressure minerals and metamorphic terrances-The view from China. Journal of Asian Earth Sciences, 35: 199–231.
Liou, J. G., Wang, X. W., Colemen, R. G., 1989. Blueschists in major suture zones of China. Tectonics, 8, 609–619.
Liou, J.G., Wang, Q., Zhai, M., Zhang, R.Y., Cong, B., 1995. Ultrahigh-P metamorphic rocks and their associated lithologies from the Dabie mountains, central China: a field trip guide to the 3rd International Eclogite Field Symposium. 1–71, Chinese Science Bulletin, Chinese Academy of Sciences Beijing, China.
Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I., Maruyama, S., 2004. Global UHP metamorphism and continental subduction/collision: the Himalayan model. International Geology Review, 46: 1–27.
Liou, J.G., Zhang, R.Y., 1996. Occurrence of intergranular coesite in ultrahigh-P rocks from the Sulu region, eastern China: implications for lack of fluid during exhumation. American Mineralogist, 81: 1217–1221.
Liou, J.G., Zhang, R.Y., Jahn, B.M., 2000. Petrological and geochemical characteristics of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu Terrane, east-central China. International Geology Review, 42: 328–352.
Lissenberg, C.J., Bédard, J.H., van Staal, C.R., 2004. The structure and geochemistry of the gabbro zone of the Annieopsquotch ophiolite, Newfoundland: implications for lower crust accretion at spreading ridges. Earth and Planetary Science Letters, 229: 105–123.
Liu, L., Wang, C., Chen, D.L., Zhang, A.D., Liou, J.G., 2009. Petrology and geochronology of HP-UHP rocks from South Altyn Tagh, northwestern China. Journal of Asian earth science, 35: 232–244.
Liu, Y.J., Neubauer, F., Genser, J., Takasu, A., Ge, X.H., Handler, R., 2006. 40Ar/39Ar ages of blueschist facies politic schists from Qingshuigou in the Northern Qilian Mountains, western China. Island Arc, 15: 187–198.
Liu, Y.H., Yang, H.J., Shau, Y.H., Meng, F.C., Zhang, J.X., Yang, J.S., Xu, Z.X., Yu, S.C., 2007. Compositions of high Fe–Ti eclogites from Sulu UHP metamorphic terrane, China: HSFE decoupling and protolith characteristics. Chemical Geology, 239: 64–82.
Ludwig, K.R., 2000. Isoplot/Ex version 2.4. A geochronological toolkit for Microsoft Excel, Berkeley Geochronology Cantrell Special Publish: 1–56.
Mahoney, J.J., Graham, D.W., Christie, D.M., Johnson, K.T.M., Hall, L.S., Vonderhaar, D.L., 2002. Between a hotspot and a cold spot: Isotopic variation in the southeast Indian ridge asthenosphere, 86°E–118°E. Journal of Petrology, 43: 1155–1176.
Mahoney, J.J., Frei, R., Tejada, M.L.G., Mo, X.X., Leat, P.T., Nägler, T.F., 1998. Tracing the Indian Ocean mantle domain through time: isotope results from old west Indian, East Tethyan, and South Pacific seafloor. Journal of Petrology, 39: 1285–1306.
Mahoney, J.J., Natland, J.H., White, W.M., Poreda, R., Bloomer, S.H., Fisher, R.L., Baxter, A.N., 1989. Isotopic and geochemical provinces of the Western Indian Ocean spreading centrers. Journal of Geophysical Research, 94: 4033–4052.
Mahoney, J.J. Le Roex, A.P., Peng, Z., Fisher, R.L., Natland, J.H., 1992. South limits of Indian Ocean ridge mantle and the origin of low 206Pb/204Pb Mid-Ocean Ridge Basalts: Isotope systematics of the central southwest Indian ridge(17°–50°E). Journal of Geophysical Research, 97: 19771–19790.
Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635–643.
Maruyama, S., Liou, J.G., Terabayashi, M., 1996. Blueschists and eclogites of the world and their exhumation. International Geological Review, 38: 490–596.
Mattinson, C.G., Wooden, J.L., Liou, J.G., Bird, D.K., Wu, C.L., 2006. Age and duration of eclogites metamorphism north Qaidam HP/UHP terrane, western China. American Journal of Science, 306: 683–711.
Mattinson, C.G., Menold, C.A., Zhang, J.X., Bird, D.K., 2007. High- and Ultrahigh-Pressure Metamorphism in the North Qaidam and South Altyn Terranes, Western China. International Geology Review, 49: 969–995.
Mattinson, C.G., Wooden, J. L., Zhang, J.X., Bird, D.K., 2009. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China. Journal of Asian Earth Sciences, 35: 298–309.
Menold, C.A., Manning, C.E., Yin, A., Tropper, P., Chen, X.H., Wang, X.F., 2009. Metamorphic evolution, mineral chemistry and thermobarometry of orthogneiss hosting ultrahigh-pressure eclogites in the North Qaidam metamorphic belt, Western China. Journal of Asia Earth Sciences, 35: 273–284.
Miyashiro, A., 1973. The Troodos complex was probably formed in an island arc. Earth and Planetary Science Letters, 19: 218–224.
Moores, E. M., 1982. Origin and emplacement of ophiolites. Reviews of Geophysics, 20: 735–760.
Moores, E. M., Jackson, E. D., 1974. Ophiolites and oceanic crust. Nature, 250: 136–139.
Muller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world_s ocean crust. Geochemistry Geophysics Geosystems, 9, Q04006, doi: 10.1029/2007GC001743.
Navon, O., Frey, F.A., Takazawa, E., 1996. Magma transport and metasomatism in the mantle: A critical review of current geochemical models – Discussion. American Mineralogist, 81, 754–759.
Nebel, O., Münker, C., Nebel-Jacobsen, Y.J., Kleine, T., Mezger, K., Mortimer, N., 2007. Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian-Pacific mantle boundary in the SW Pacific. Earth and Planetary Science Letters, 254: 377–392.
Niu, Y. L., Batiza, R., 1997. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth and Planetary Science Letters, 148: 471–483.
Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G., Saunders, A.D., Mahoney, J.J., Taylor, R.N., 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: insights into the depleted mantle, Chemical Geology, 149: 211–233.
Patchett, P.J., Tatsumoto, M. (1980). Hafnium isotope variations in oceanic basalts. Geophysical Research Letters, 7(12): 1077-1080.
Paulick, H., Münkera, M., Schuth, S., 2010. The influence of small-scale mantle heterogeneities on Mid-Ocean Ridge volcanism: Evidence from the southern Mid-Atlantic Ridge (7°30′S to 11°30′S) and Ascension Island. Earth Planetary Sciences Letters, 296(3–4): 299–310.
Pearce, J. A., 1983. In Continental Basalts and Mantle Xenoliths (C. J. Hawkesworth and M. J. Norry, eds.) Shiva Publishing, 230–49.
Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In Kokelaar, B. P., and Howells, M. F., eds., Marginal basin geology: Geological Society of London Special Publication, 16: 77–94.
Pearce, J. A., 2003. Supra-subduction zone ophiolites: the search for modern analogues. In: Dilek, Y. andNewcomb, S. eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of American Special Paper, 373: 269–293.
Peate, D.W., Baker, J.A., Blichert-Toft, J., Hilton, D.R., Storey, M., Kent, A.J.R., Brooks, C.K., Hansen, H., Pedersen, A.K., Duncan, R.A., 2003. The Prinsen of Wales Bjerge formation lavas, East Greenland: The Transition from tholeiitic to alkali magmatism during Paleogene continental break-up. Journal of Petrology, 44(2):279–304.
Pertermann, M., Hirschmann, M.M., 2002. Trace-element partitioning between vacancy-rich eclogitic clinopyroxene and silicate melt. American Mineralogist, 87: 1365–1376.
Pertermann, M., Hirschmann, M,. M., Hametner, K., Günther, D., Schmidt, M.W., 2004. Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochemistry Geophysics Geosystems, 5: Q05A01, doi:10.1029/2003GC000638.
Pik, R., Deniel, C., Coulon, C., Yirgu, G., Marty, B., 1999. Isotopic and trace element signatures of Ethiopian flood basalts: Evidence for plume-lithosphere interactions. Geochimica et Cosmochimica Acta, 63: 2263–2279.
Puffer, J.H., 2001. Contrasting high field strength element contents of continental flood basalts from plume versus reactivated-arc sources. Geology, 29: 675–678.
Qian, Q., Zhang, Q., Sun, X.M., 2001. Tectonic setting and mantle source characteristic of Jiugequan basalts, North Qilian: Constraints from trace elements and Nd isotopes. Acta Petrologica Sinica, 17(3): 385–394.(in Chinese with English abstract)
Qiu, F.Q., 1984. Caledonian rift of northern Qilian Mountains. Geological Papers on Qinghai-Tibet Plateau, 14: 41–60.
Raumer, J.F., Bussy F., Stampfli, G.M., 2009. The Variscan evolution in the external massifs of the Alps and place in their Variscan framework. Comptes Rendus Geoscience, 341: 239–252.
Raumer, J.F., Stampfli, G.M., 2008. The birth of the Rheic Ocean–Early Palaeozoic subsidence and subsequent tectonic plate scenarios. Tectonophysics, 461: 9–20.
Rehkämper, M. and Hormann, A.W. 1997. Recycled oceancrust and sediment in Indian ocean MORB. Earth and Planetary Science Letters, 147: 93–106.
Reinecke, T., 1991. Very-high-pressure metamorphism and uplift of coesitebearing metasediments from the Zermatt-Saas zone, Western Alps. European Journal of Mineralogy, 3: 7–17.
Reiners, P.W., 1998. Reactive melt transport in the mantle and geochemical signatures of mantle-derived magmas. Journal of Petrology, 39: 1039–1061.
Rhodes, J.M., Vollinger, M.J., 2004. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: geochemical stratigraphy and magma types. Geochemistry, Geophysics, Geosystems. 5, Q03G13. doi:10.1029/ 2002GC000434.
Richards, M.A., Duncan, R.A., Courtillot, V.E., 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science, 246: 103–107.
Rubatto, D., Gebauer, D., Fanning, M., 1998. Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolite: implications for the geodynamic evolution of the Central and Western Alps. Contributions to Mineralogy and Petrology, 132: 269–287.
Rudnick, R. L., Barth, M., Horn, I., McDonough, W. F. 1999. Rutile-bearing eclogites: Missing link between continents and depleted mantle. Science, 287: 278–281.
Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Review of Geophyisics, 33(3): 267–309.
Salters, V.J.M., 1996. The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planetary Sciences Letters, 141: 109–123.
Salters, V.J.M., Hart, S.R., 1991. The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection, Earth and Planetary Science Letters, 104: 364–380.
Salters, V. J. M., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry Geophysics Geosystems, 5: Q05004, doi:10.1029/2003GC000597.
Salters, V.J.M., White, W.M., 1998. Hf isotope constraints on mantle evolution, Chemical Geology, 145: 447–460.
Sengör, A.M.C., 1987. East Asia tectonic collage. Nature, 318, 267–287.
Sengör, A.M.C., 1992. The Palaeo-Tethyan suture: A line of demarcation between two fundamentally different architectural styles in the structure of Asian. The Islands arc, 1: 78–91.
Sengör, A.M.C., Natal in BA. andBurtman US. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364:209–304.
Shijo, R., 1999. Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system. Chemical Geology, 157: 69–88.
Sims, K.W., Blichert-Toft, J., Fornari, D.J., Perfit, M.R., Goldstein, S.J., Johnson, P., DePaolo, D.J., Hart, S.R., Murrell, P.J., Michael, P.J., Layne, G.D., Ball, L.A., 2003. Aberrant youth: Chemical and isotopic constraints on the origin of off-axis lavas from the East Pacific Rise, 9 degrees-10 degrees N. Geochemistry Geophysics Geosystems, 4: Q08621, doi:10.1029/2002GC000443.
Smith, A.D., Huang, L.Y., 1997. The Use of extraction chromatographic materials in procedures for the isotopic analysis of neodymium and strontium in rocks by thermal ionization mass spectrometry. Journal of National Cheng Kung University, 32, Scl. Engineering and Medicine Science Section: 1–10.
Smith, D.C., 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641–644.
Snyder, G.A., Simmons, E.C., 1999. Mafic cumulus processes and chemical evolution in an open magma chamber: The Newark island layered intrusion, Labrador, Canada. International Geology Review, 41: 47–72.
Sobel, E.R., Arnaud, N., 1999. A possible middle Paleozoic suture in the Altun Shan, NW China. Tectonics, 18: 64–74.
Sobolev, N.V., Shatsky, V.S., 1990. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature, 343: 742–746.
Song, S.G., Su, L., Li,X.H., Zhang, G.B., Niu,Y.L., Zhang, L.F., 2010. Tracing the 850 Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China. Precanbrian Research, 183: 805–816.
Song, S.G., Yang, J.S., Lios, J.G., 2003a. Petrology, geochemistry and isotopic ages of eclogites from the dulan UHPM Terrance, the North Qaidam, NW China. Lithos, 70: 195–211.
Song, S.G., Yang, J.S., Xu, Z.Q., Liou, J.G., Shi, R.D., 2003b. Metamorphic evolution of the coesite–bearing ultrahigh–pressure terrane in the north Qaidam, northern Tibet, NW China: Journal of metamorphic Geology, 21: 631–644.
Song, S.G., Zhang, LF., Niu, Y.L., Song, B., Zhang, G.B., Wang, Q.G., 2004. Zircon U-Pb SHRIMP ages of eclogites in the North Qilian Mountains and their tectonic implications. Chinese Science Bulletin, 49: 848–852.
Song, S.G., Zhang, L.F., Niu, Y., Su, L., Jian, P., Liu, D., 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters, 234: 99–118.
Song, S.G., Su, L., Niu, Y.L., Lai, Y., Zhang, L.F., 2009a. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochimica et Cosmochimica Acta, 73: 1737–1754.
Song, S.G., Su, L., Niu, Y.L., Lai, Y., Zhang, G.B., Zhang, L.F., 2009b. Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: A review. Journal of Asian Earth Sciences, 35, 285–297.
Song, S.G., Zhang, L.F., Niu, Y.L., Song, B., Liu, D.Y., 2006. Evolution from oceanic subduction to continental collision: a Case study from the North Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology, 47: 435–455.
Song, S.G., Zhang, L.F., Niu, Y.L., Wei, C.J., Liou, J.G., Shu, G.M., 2007. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: implications for Early Palaeozoic cold oceanic subduction and water transport into mantle. Journal of metamorphic geology, 25: 547–563.
Stalder, R., Foley, S. F., Brey, G.P., Horn, I., 1998. Mineral-aqueous fluid partitioning of trace elements at 900-1200°C and 3.0-5.7 GPa: New experiment data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta, 62: 1781-1801.
Stracke, A., Hofmann, A.W., Hart, S.R., 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry Geophysics Geosystems, 6: Q05007, doi:10.1029/ 2004GC000824.
Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publication 42. Blackwell, Oxford, 313–346.
Takahashi, T., Shuto, K., 1997. Major and trace element analyses of silicate rocks using X-ray fluorescence spectrometry RIX3000. Rigaku-Denki Journal 28, 25–37.(in Japanese)
Tang, H.F., Liu, C.Q., Nakai, S. and Orihashi, Y., 2007. Geochemistry of eclogites from the Dabie–Sulu terrane, eastern China: new insights into protoliths and trace element behaviour during UHP metamorphism. Lithos, 95: 441–457.
Tatsumoto, M., Nakamura, Y., 1991. Dupal anomaly in the Sea of Japan: Pb, Nd and Sr isotopicvariations at the eastern Eurasian continental margin. Geochimica et Cosmochimica Acta, 55: 3697– 3708.
Thompson, R.N., Riches, A.J.V., Antoshechkina, P.M., Pearson, D.G., Nowell, G.M., Ottley, C.J., Dickin, A.P., Hard, V.L., Nguho, A.K., Niku-Paavola, V., 2007 Origin of CFBMagmatism: Multi-tiered Intracrustal Picrite^Rhyolite Magmatic Plumbing at Spitzkoppe,Western Namibia, during Early Cretaceous Etendeka Magmatism. Journal of Petrology, 48(6):1119–1154.
Toplis, M. J., Carroll, M. R., 1995. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. Journal of Petrology, 36: 1137–1170.
Tseng, C.Y., 2007. The Dongcaohe Ophiolite at the North Qilian Mountains, NW China. Ph. D. Thesis, National Cheng–Kung University, 1–123.
Tseng, C.Y., Yang, H.J., Yang, H.Y., Liu, D.Y., Wu, C.L., Cheng, C.K., Chen C.H., Ker, C.M., 2009a. Continuity of the North Qilian and North Qiling orogenic belts, central orogenic system of China: Evidence from newly discovered Paleozoic adakitic rocks. Gondwana Research, 16(2): 285–293.
Tseng, C.Y., Yang, H.J., Yang, H.Y., Liu, D.Y., Tsai, C.L., Wu, H.Q., Zuo, G.C., 2007a. The Dongcaohe ophiolite from the North Qilian Mountains: A fossil oceanic crust of the Paleo–Qilian ocean. China Science Bulletin, 52(17): 2390–2401.
Tseng, C.Y., Yang, H.Y., Wan Y.S., Liu, D.Y., Wen, D.J., Lin, T.C., Tung, K.A., 2006. Finding of Neoproterozoic (~775 Ma) magmatism recorded in metamorphic complexes from the North Qilian Orogen: Evidence from SHRIMP zircon U–Pb dating. Chinese Science Bulletin, 51(8): 963–970.
Tseng, C.Y., Yang, H.Y., Wu, H.Q., Zuo, G.C., 2007b. The silicate mineral inclusions in the chromian spinel from the Dongcaohe ophiolite, North Qilian Mountains, northwestern China: Record of syntexis of lower oceanic crust. The Canadian Mineralogist, 45: 793–808.
Tseng, C.Y., Zuo, G.C., Yang, H.J., Yang, H.Y., Tung, K.A., Liu, D.Y., Wu, H.Q., 2009b. Occurrance of Alskan–type mafic–ultramafic intrusions in the North Qilian Moutains, northwest China; Evidance of Cambrian arc magmatism on the Qilian block. Island Arc, 18: 526–549.
Tsujimori, T., Sisson, V.B., Liou, J. G., Harlow, G.E., Sorensen, S.S., 2006. Very-low-temperature record of the subduction process: a review of worldwide lawsonite eclogites. Lithos, 92: 609–624.
Tung, K.A., Yang, H.Y., Liu, D. Y. Zhang, J.X., Tseng, C.Y., Wan, Y.S., 2007a. SHRIMP U-Pb geochronology of detrital zircons from the Longshoushan Group and its tectonic significance. Chinese Science Bulletin, 52: 1414–1425.
Tung, K.A., Yang, H.J., Yang, H.Y., Liu, D.Y., Zhang, J.X. Wan, Y.S., Tseng C.Y., 2007b. SHRIMP U–Pb geochronology of the zircons from the Precambrian basement of the Qilian block and its geological significances. Chinese Science Bulletin, 52: 2687–2701.
Tung, K.A., Yang, H.J., Yang, H.Y., Liu, D.Y., Zhang, J.X, Yang, H.J., Shau, Y.H., Tseng, C.Y., 2013. The Neoproterozoic granitoids from the Qilian block, NW China:Evidence for a link between the Qilian and South China blocks. Precambrian research, 235: 163–189.
Upton, B.G.J., Ramo, O.T., Heaman, L.M., Blichert-Toft, J., Kalsbeek, F., Barry, T.L., Jepsen, H.F., 2005. The Mesoproterozoic Zig-Zag Dal basalts and associated intrusions of eastern North Greenland: mantle plume-lithosphere interaction. Contribution to mineralogy and petrology, 149: 40–56.
Usui, T., Nakamura, E., Helmstaedt, H., 2006. Petrology and geochemistry of eclogite xenoliths from the Colorado plateau: Implications for the evolution of subducted oceanic crust. Journal of Petrology, 47: 929–964.
Vannucchi, P., Scholl, D.W., Meschede, M., McDougall-Reid, K., 2001. Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: combined implications from ODP Leg 170, seismic offshore data, and regional geology of the Nicoya Peninsula. Tectonics, 20:, 649–668. http://dx.doi.org/10.1029/2000TC001223.
Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., Albarède, F., 1999. Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168: 79–99.
Volker, F., McCulloch, M. T., Altherr, R., 1993. Submarine basalts from the Red Sea: new Pb, Sr, and Nd isotopic data. Geophysical Research Letter, 20: 927–930.
Volkova, N. I., Frenkel, A. E., Budanov, V. I., Lepezin, G.G., 2004. Geochemical signatures for eclogite protolith from the Maksyutov Complex, South Urals. Journal of Asian Earth Sciences, 23: 745–759.
Von Drach, V., Marsh B.D., Wasserburg, G.J., 1986. Nd and Sr isotopes in the Aleutians: multicomponent parenthood of island-arc magmas. Contribution to Mineralogy and Petrology, 92: 13–34.
Wan, Y. S., Yang, J. S., Xu, Z. Q., Wu, C. L., 2000. Geochemical characteristics of the Maxianshan complex and Xinglongshan group in the eastern segment of the Qilian orogenic belt. Journal of the geological society of China, 43(1): 52–68.
Wan, Y.S., Xu, Z.Q., Yang, J.S., Zhang, J.X,. 2003. The Precambrian high_grade basement of the Qilian terrane and Neighboring areas: Its ages and compositions. Acta Geoscientia Sinica, 24: 319–324.(in Chinese with English abstract)
Wang, Q., Coward, M.P., 2001, The Chaidam basin, NW China: formation and hydrocarbon potential. Journal of Petroleum Geology, 13: 93–112.
Wang, C.Y., Zhang, Q., Qian, Q., Zhou, M.F., 2005. Geochemistry of the early Paleozoic Baiyin volcanic rocks (NW China): Implications for the tectonic evolution of the North Qilian orogenic belt. Journal of Geology 113: 83–94.
Wang, Q., Liu, X.Y., 1976. Ancient oceanic crust of the Chilienshen region, Western China and its tectonic significance. Science Geologica sinica, 1: 42–55.(in Chinese with English abstract)
Wei, C.J., Song, S.G., 2008. Chloritoid–glaucophane schist in the north Qilian orogen, NW China: phase equilibria and P–T path from garnet zonation. Journal of Metamorphic Geology. 26: 301–316.
Weis, D., Frey, F.A., 1996. Role of the Kerguelen plume in generating the eastern Indian Ocean seafloor. Journal of Geophysics Research, 101: 13,841–13,849.
Weis, D., Kieffer, B., Hanano, D., Silva, I.N., Barling, J., Pretorius, W., Maerschalk, C., Mattielli, N., 2007. Hf isotope compositions of US Geological Survey reference materials. Geochemistry, Geophysics, Geosystems, 8.
http://dx.doi.org/10.1029/2006GC001473.
Wendt, J. I., Regelous, M., Niu, Y. L., Hekinian, R., Collerson, K. D., 1999. Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific. Earth and Planetary Science Letters, 173: 271–284
White, R.S. and McKenzie, D.P., 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysics Research, 94: 7730–7685.
White, W.M., 1993. 238U/204Pb in MORB and open system evolution of the depleted mantle. Earth Planetary Science Letter, 19: 339–3049.
Willems, H., Zhou, Z., Zhang, B., Gräfe, K.U., 1996. Stratigraphy of the upper Cretaceous and lower Tertiary strata in the Tethyan Himalayas of Tibet(Tingri area, China). Geol Rundsch, 85: 723–754.
Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: Mckibben, M. A.,Shanks III, W. C., Ridley, W. I. (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology 7, 1–35.
Windley, B.F., Alexeiev, D., Xiao, W.J., Kröner, A., Badarch, G., 2007. Tectonic models for accretion of the centrl Asian Orogenic belt. Geological Society London Journal, 164: 31–47.
Workman R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231: 53–72.
Wu, C.L., Gao, Y.H., Frost, B.R., Robison, P.T., Wooden, J.L., Wu, S.P., Chen, Q.L., Lei, M., 2011. Am Early Paleozoic double–subduction model for the North Qilian oceanic plate: Evidence from zircon SHRIMP dating of granites. International Geology review, 53: 157–181.
Wu, C.L., Xu, X.Y., Gao, Q.M., Lei, M., Gao, Y.M., Frost, R.B., Wooden, J.L., 2010. Early Paleozoic granitoid magmatism and tectonic evolution in North Qilian, NW China. Acta Petrologica Sinica, 26: 1027–1044.(in Chinese with English abstract)
Wu, C.L., Yao, S.Z., Yang, J.S., Zeng, L.S., Chen, S.Y., Li, H.B., Qi, X.X., Wooden, J.L., Mazdab, F.K., 2006. Double subduction of the Early Paleozoic North Qilian oceanic plate: Evidence from granites in the central segmet of North Qilian, NW China. Geology in China, 33: 1197–1208.(in Chinese with English abstract)
Wu, H.Q., Feng, Y.M., Song, S.G., 1993. Metamorphic and deformation of blueschist belts and their tectonic implications, North Qilian Mountains, China. Journal of Metamorphic Geology, 11: 523–536.
Wu, F.Y., Zhao, G.C., Wilde, S.A., Sun, D.Y., 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24: 523–545.
Xia, X.H., Song, S.G., 2010. Forming age and tectono-petrogenises of the Jiugequan ophiolite in the North Qilian Mountain, NW China. Chinese Science Bulltin, 55: 1899–1907.
Xia, L.Q., Xia, Z.H., Xu, X.Y., 2003. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China. Geological Society of America Bulletin, 115: 1510–1522.
Xia, L.X., Xia, Z.C., Xu, X.Y., 1996. Petrogenesis on Marine volcaic rocks in North Qilian Mountains. Beijing: Geological Publishing house, 5–146.(in Chinese with English abstract)
Xiao, W.J., Windley, B.F., Yong, Y., Zhen, Y., Chao, Y., Liu, C.Z., Li, J.L., 2009a. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35:232–333.
Xiao, W.J. Windley, B.F., Huang, B.C., Han C.M., Yuan, C., Chen, H.L., Sun, M., Sun,S., Li, J.L., 2009b, End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189–1217.
Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218: 339–359.
Xu, J.F., Castillo, P.R., 2004. Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain. In: Flower, M. eds., Tectonophysics, Special Issue 393: 9–27.
Xu, J.F. Castillo, P.R., Li, X.H., Yu, X.Y., Zhang, B.R., Han, Y.W., 2002. MORB-type rocks from the Paleo–Tethyan Mian–Lueyang northern ophiolite in the Qinling Mountains, central China: implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters, 198: 323–337.
Xu, Z.Q., Xu, H.F. Zhang, J.X. Li, H.B. Zhu, Z.Z., Qu, J.C., 1994. The Zhoulangnanshan Caledonian subductive complex in the Northern Qilian Mountains and its dynamics. Acta Geologica Sinica, 68: 1–15.(in Chinese with English abstract)
Xu, Z.Q., Yang, J.S., Wu, C.L., Li, H.B., Zhang, J.X., Qi, X.X., Song, S.G., Qiu, H.J., 2006. Timing and mechanism of formation and exhumation of the Northern Qaidam ultrahigh-pressure metamorphic belt. Journal of Asian Earth Sciences, 28: 160–172.
Yang, H.J., Frey, F. A., Weis, D., Giret, A., Pyle, D., Michon, G., 1998. Petrogenesis of the flood basalts forming the Northern Kerguelen archipelago: Implications for the Kerguelen plume. Journal of Petrology, 39: 711–748.
Yang, H.Y., Lu, J., Wu, H.Q., 1997. Mineralogy and petrology of the ophiolite from the Namu Bridge in the North Qilian Mountains, northwest China. Journal Geological Society of China, 40: 499–526.(in Chinese with English abstract)
Yang, H.Y., Tseng, C.Y., Zuo, G.C., Wu, H.Q., Xu, Z.Q., Yang, J.S., 2003. A lower Paleozoic plate tectonic model for the North Qilian Mountains, NW China. Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract T42B–0287.
Yang, H.Y., Wu, Y.M., Wu, C.L., 2002. Petrology of an arc–oceanic crust contact zone in the Laohushan backarc basin, eastern section of the North Qilian Mountains, NW China. Acta Geoloica Sinica–Engl Ed, 76(1): 1–14.
Yang, J.J., 2006. Ca-rich garnet-clinopyroxene rocks at Hujialin in the Su-Lu terrane (Eastern China): Deeply subducted arc cumulates? Journal of Petrology, 47: 965–990.
Yang, J.J., Deng, J.F., 1994. Garnet peridotites and eclogites in the northern Qaidam Mountains, Tibetan plateau: a first record [G]. First Workshop on UHP Metamorphism and Tectonics, ILP Task Group III-6, Stanford, A-20.
Yang, J.S., Wu, C.L., Zhang, J.X., Shi, R.D., Meng, F.C., Wooden, J., Yang, H.Y., 2006. Protolith ofeclogites in the North Qaidam and Altun UHP terrane, NW China: earlier oceanic crust? Journal of Asian Earth Sciences, 28: 185–204.
Yang, J. S., Xu, Z. Q., Li, H. B., Wu, C. L., Shi, R. D., Zhang, J. X., 1998. The discovery of eclogite in the northern margin of Qaidam basin, China, Chinese Science Bulletin, 43: 1544–1548.(in Chinese with English abstract)
Yang, J.S., Xu, Z.Q., Zhang, J.X., Chu, C.Y., Zhang, R.Y., Liou, J.G., 2001. Tectonic significance of early Paleozoic high-pressure rocks in Altun–Qaidam–Qilian Mountains, northwest China. Geological Society of America Memoir, 194: 151–170.
Yang, J.S., Xu, Z.Q., Zhang, J.X., Song, S.G., Wu, C.L., Shi, R.D., Li, H.B., Maurice, B., 2002. Early Palaeozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan plateau and a paired subduction model. Terra Nova, 14(5): 397–404.
Yang, J. S., Wu, C. L., Zhang, J. X., Shi, R. D., Meng, F. C., Wooden, J., Yang, H.Y., 2006. Protolith of eclogites in the north Qaidam and Altun UHP terrane, NW China: Earlier oceanic crust? Journal of Asian Earth Sciences, 26: 1–20.
Ye, k., Cong, B.L., Ye, D., 2000. The possible subduction of continental material to depths greater than 200km. Nature, 407: 734–736.
Yin, A., Harrison, T.M. 2000. Geological evlution of the Himalayan-Tibetan orogen. Annual Reviews of Earth and Planetary Sciences, 28: 211–280.
Yin, A., Manning, C.E., Lovera, O., Menold, C.A., Chen, X., Gehrels, G.E., 2007. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China. International Geology Review, 49: 681–716.
Yu, S.Y., Zhang, J.X., Meng, F.C., Qi, X.X., 2007. Geochemical characteristics of low temperature eclogites from the subduction accretionary complex in the North Qilian Mountain. Acta petrologica et Mineralogica, 26(2):101–108. (in Chinese with English abstract)
Yu, S.Y., Zhang, J.X., Del Real, P.G., 2011. Petrology and P–T path of high-pressure granulite from the Dulan area, North Qaidam Mountains, northwestern China. Journal of Asian Earth Sciences, 42: 641–660.
Yu, S.Y., Zhang, J.X. Li, H.K., Huo, K.J., Mattinson, C.G., Gong, J.H., 2013. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane: New evidence for deep continental subduction. Gondwana Research, 23: 901–919.
Zhang, C., Zhang, L.F., Bader, T., Song, S.G., Lou, Y.X., 2013. Geochemistry and trace element behaviors of eclogite during its exhumation in the Xitieshan terrane, North Qaidam UHP belt, NW China. Journal of Asian Earth Sciences, 63: 81–97
Zhang, G.B., Song, S.G., Zheng, L.F., Niu, Y.L., 2008a. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology. Lithos, 104: 99–118.
Zhang, G.B., Zhang, L.F., Niu, Y.L., Song, S.G., 2009a. UHP metamorphic evolution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35: 310–322.
Zhang, G.B., Ellis, D.J., Christy, A.G., Zhang, L.F., Niu, Y.L., Song, S.G., 2009b. UHP metamorphic evolution of coesite-bearing eclogite from the Yuka terrane, North Qaidam UHPM belt, NW China. Europe Journal of Mineralogy, 21: 1287–1300.
Zhang, H.F., Zhang, B.R., Harris, N., Zhang, L., Chen, Y.L., Chen, N.S., Zhao, Z.D., 2006a. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China: Constraints on petrogenesis and tectonic affinity: Journal of Asian Earth Sciences 27: 751–764.
Zhang, J.J. Zheng, Y.F. and Zhou, Z.F. 2009c. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326.
Zhang, J.X., Li, J.P., Yu, S.Y., Meng, F.C., Mattinson, C.G., Yang, H.J., Ker, C.M. 2012. Provenance of eclogitic metasediments in the north Qilian HP/LT metamorphic terrane, western China: Geodynamic implications for early Paleozoic subduction–erosion. Tectonophysics, 570–571: 78–101.
Zhang, J. X., Mattinson, C. G., Meng, F. C., Wan, Y.S., 2005a. An Early Palaeozoic HP/HT granulite-garnet peridotite association in the south Altyn Tagh, NW China: P–T history and U–Pb geochronology, Journal of Metamorphic Geology, 23: 491–510.
Zhang, J. X., Mattinson, C. G., Yu, S.Y. Li, J.P., Meng, F. C., 2005b. U–Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic geology, 28: 955–978.
Zhang, J.X., Mattinson, C.G., Yu, S.Y., Li, J.P., Memg, F.C., 2010. U–Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction. Journal of Metamorphic geology, 28: 955–987.
Zhang, J. X., Meng, F. C., 2006b. Lawsonite-bearing eclogites in the north Qilian and north Altyn Tagh: evidence for cold subduction of oceanic crust. Chinese Scinece Bulletin, 51: 1238–1244.
Zhang, J. X., Meng, F. C., Li, J.P., Mattinson, C.G. 2009d. Coesite in eclogite from the North Qaidam and its implications. Chinese Science Bulletin, 54(6): 1105–1110.(in Chinese with English abstract)
Zhang, J, X., Meng, F.C, Wan, Y.S., 2007a. A cold Early Palaeozoic subduction zone in the north Qilian mountains, NW China: petrological and U–Pb geochronological constraints. Journal of Metamorphic Geology, 25: 285–304.
Zhang, J. X., Meng, F. C., Yang, J. S., 2004. Eclogitic metapelites in the western segment of the north Qaidam Mountains: Evidence on “in situ” relationship between eclogite and its country rock. Science in China Ser.D Earth Sciences, 12: 1102–1112.
Zhang, J. X., Meng, F. C.,Yang, J.S., 2005c. A new HP/LT metamorphic terrane in the northern Altyn Tagh, western China. International Geology Review, 47: 371–386.
Zhang, J.X., Yang, J.S., Mattison, C.G., Xu, Z.Q., Meng, F.C., Shi, R.D., 2005d. Two contrasting eclogites cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints, Lithos, 84: 51–76.
Zhang, J.X., Yang, J.S., Meng, F. C., Wan, Y.S., Li, H.M., Wu, C.L., 2006c. U–Pb isotopic studies of eclogites and their host gneisses in the Xitieshanarea of the North Qaidam mountains, western China: New evidence for an early Paleozoic HP–UHP metamorphic belt. Journal of Asian Erath Sciences, 28: 143–150.
Zhang, J.X., Yang, J.S., Xu, Z.Q., Meng, F.C., Li, H.B., Shi, R.D., 2002a. Evidence for UHP metamorphism of eclogites from the Altun Mountains, Chinese Science Bulletin, 47(9): 751–755.
Zhang, J. X., Zhang, Z. M., Xu, Z. Q., Yang, J. S., Cui, J.W., 2001. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China. Lithos, 56: 187–206.
Zhang, L.F., Ai, Y., Song, S.G., 2005e. The formation and tectonic evolution of UHP metamorphic belt in Southwestern Tianshan, Xinjiang. Acta Petrologica Sinica 21 (4): 1029–1037 (in Chinese with English abstract).
Zhang, L.F., Ai, Y., Song, S.G., Song, B., Rubatto, D., Williams, S., Liou, J.G., Ellis, D., 2007b. Triassic collision of Western Tianshan orogenic belt, China: evidences from SHRIMP U–Pb dating of zircon from eclogitic rocks, Lithos. Lithos, 96: 266–280.
Zhang, L.F., Ellis, D.J., Jiang, W.B., 2002b. Ultrahigh pressure metamorphism in western Tianshan, China, part I: evidences from the inclusion of coesite pseudomorphs in garnet and quartz exsolution lamellae in omphacite in eclogites. American Mineralogist, 87: 853–860
Zhang, L.F., Ellis, D., Williams, S., Jiang, W.B., 2002c. Ultrahigh pressure metamorphism in western Tianshan, China, part II: evidence from magnesite in eclogite. American Mineralogist, 87: 861–866.
Zhang, Q., Chen, Y., Zhuo, D.J. Qian, Q., Jia, X.Q., Han, S., 1998. Geochemical characteristics and genesis of Dachadaban ophiolite in North Qilian area. Science in China(D), 41(3): 277–281.
Zhang, Q., Sun, X.M., Zhou, D.J., 1997a. The characteristics of North Qilian Ophiolites, forming settings and their tectonic significance. Advance Earth Science, 12(4): 151–165.(in Chinese with English abstract)
Zhang, Q., Sun, X.M., Zhuo, D.J. Qian, Q., Chen, Y., Wang, Y.M., Jia, X.Q., Han, S., 1997b. The characteristics of North Qilian opiolites, forming setting and their tectonic significance. Advance in Earth Sciences, 12(4): 366–393.(in Chinese with English abstract)
Zhang, Q., Wang Y.M., Liu, D.Y., Jian, P., Qing, Q., Zhuo, G.Q., Ronbison, P.T., 2008b. A brief review of ophiolites in China. Journal of Asian Earth Sciences, 32: 308–324.
Zhang, Q., Wang, Y.M., Qian, Q., Sun, X.M., Wang, J.R., Liu, M.Q., 1997c. Geochemical characteristicts of pillow lavas in ophiolite and it’s overlying rock sequence in the Laohushan area from Jingtai country, Gansu province. Acto Petrologica Sinica, 13(1): 92–99.(in Chinese with English abstract)
Zhang, S.Q., Mahoney, J.J., Mo, X.X., Gha, z., A.M., Milani, L., Crawford, A.J., Guo, T.Y., Zhao, Z.D., 2005f. Evidence for a widespread Tethyan upper mantle with Indian–Ocean–Type isotopic characteristics. Journal of Petrology, 46(4): 829–858.
Zhou, J. X., Xu, F. Y., Wang, T. C., Cao, A. F., Yin, C. M., 2006. Cenozoic deformation history of the Qaidam basin, NW China: Results from cross-section restoration and implications for Qinghai-Tibet plateau tectonics. Earth and Planetary Science Letters, 243: 195–210.
Zimmer, M., Kröner, A., Jochum, K. P., Reischmann, T. Todt, W., 1995. The Gabal Gerf complex: A Precambrian N-MORB ophiolite in the Nubian shield, NE Africa. Chemical Geology, 123: 29–51.
Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annual Review Earth Planetary Science, 14: 493–571.
Zuo, G.C., Liu, J.C., 1987. The evolution of tectonic of early Paleozoic tectonic evolution in north Qilian range, China. Scientia Geologica Sinica, 1: 14–24.
Zuo G.C., Liu, Y.K., Zhang, C., 2002. Tectono_stratigraphic characteristics of continent crustal remnants in central–western sector of the North Qilian orogen. Chinese Journal of Geology, 37: 302–312.(in Chinese with English abstract).
Zuo, G.C., Wu, H.Q., 1997. A Bi–subduction–collision orogenic model of Early–Paleozoic in the middle part of North Qilian area. Advance in Earth Sciences, 12(4): 315–323.(in Chinese with English abstract)
校內:2025-12-31公開