簡易檢索 / 詳目顯示

研究生: 劉信佑
Liu, Hsin-You
論文名稱: 具共振腔結構之白光多模態有機發光二極體
Multimode Emission of White Organic Light Emitting Diodes with Resonant Cavity structure
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 62
中文關鍵詞: 共振腔布拉格反射鏡有機發光二極體
外文關鍵詞: DBR, OLED, Microcavity
相關次數: 點閱:58下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係利用電子槍蒸鍍系統成長布拉格反射鏡(distributed Bragg reflector, DBR),再將有機發光二極體(organic light emitting diodes, OLED)製作於布拉格反射上,而使有機發光二極體形成共振腔出光形式,最終量測元件之特性。
    論文中,我們設計合適布拉格反射鏡,及仔細控制共振腔長度,並利用共振腔長填充物質SiO2,來使得共振腔結構有機發光二極體呈現多共振模態混白光放光。最終結果四模態共振元件在八伏特工作電壓下其色度座標已達到(0.33,0.32)之純白色,且演色性由傳統結構之60.46改善至82.17,且元件在200A/m2工作電流密度下,其發光效率為5.85cd/A,而傳統結構元件之發光效率為4.53cd/A,由此可知藉由共振腔效應可使元件發光效率增加29%。
    由實驗結果可以明顯發現,在合理設計及控制共振腔內之各參數,我們可以得到色度較佳之純白光,及同時提升元件出光之演色性以及發光效率。

    In this study, we evaporate distributed bragg reflectors (DBR) using e-beam evaporator system, then we fabricate organic light emitting diodes (OLED) on DBR. Our resonant cavity OLED exhibit multimode emission, and spectral narrowing, enhancement of emitting intensity were observed due to the resonant effect. Finally, we measure the characteristic of the devices.
    In this study, we design suitable DBR reflector, and control the optical length of resonant cavity carefully. We add SiO2 filler layer to increase optical length, and make the resonant cavity device emit a white color consisting of multimode emission. The yield-current density(Y-J) characteristics of the four modes device showed the yield of 5.85cd/A at operation current density of 200A/m2 and its CIE also showed (x=0.33, y=0.32) at 8Volt with better performance in color-rendering index (CRI) of 82.17. The current efficiency was enhanced by 29% compared with conventional organic light emitting diodes(4.53cd/A) by the resonant effect.
    Our results clearly imply that by the reasonable design of the resonant cavity structure, it is possible to realize multimode emission of white organic light emitting diodes with even higher efficiency and better CRI.

    目錄 摘要(中文)/Ⅰ 摘要(英文)/Ⅲ 目錄/Ⅴ 圖表說明/Ⅷ 第一章 緒論/1 1-1 有機發光二極體的簡介與發展/1 1-2 研究動機/2 第二章 理論背景/4 2-1 有機電激發光元件之原理/4 2-2 Fabry-Perot Cavity 理論/4 2-3 共振腔結構之有機發光二極體光學模型/6 2-4 演色性/7 2-5 布拉格反射鏡(DBR)/9 第三章 具共振腔結構有機電激發光元件之製作/13 3-1 實驗結構/13 3-2 實驗流程/13 3-2-1 布拉格反射之製作/13 3-2-2 填充層(二氧化矽)及陽極(氧化錫銦)之蒸鍍/14 3-2-3 陽極(氧化錫銦) 圖案化/14 3-2-4 ITO表面潔淨處理/15 3-2-5 有機及金屬真空熱蒸鍍系統/15 3-2-6 有機薄膜的蒸鍍/16 3-2-7 電極的蒸鍍/17 3-2-8 元件量測/17 3-3 實驗材料/18 3-3-1 有機材料/18 3-3-2 緩衝層(Buffer Layer)/19 3-3-3 金屬陰極(Metal Cathode)/19 第四章 實驗結果與討論/20 4-1 布拉格反射鏡及鋁電極反射率量測與結果/20 4-1-1 介電質之布拉格反射鏡/20 4-1-2 反射陰極鋁電極之反射率/20 4-2 材料折射率之量測/21 4-2-1 共振腔主體之SiO2及ITO折射率/21 4-2-2 介電質材料之折射率/22 4-3 Setfos光學模擬/23 4-3-1 DBR模擬/23 4-3-2傳統結構之下發光有機發光二極體模擬/23 4-3-3 多共振模態混白光有機發光二極體模擬/23 4-3-4 Setfos模擬元件比較/24 4-4 傳統結構之下發光有機發光二極體/25 4-5 兩共振模態混白光有機發光二極體/25 4-6 三共振模態混白光有機發光二極體/26 4-7 四共振模態混白光有機發光二極體/27 4-8 共振腔結構與傳統結構之載子生命週期量測/27 第五章 結論/30

    [1] M. Pope, H. P. Kallmann and P. J. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys., 38, 2042, (1963).
    [2] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., 51, 913, (1987).
    [3] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K.
    MacKay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, 34, 539, (1990).
    [4] 陳金鑫, “激發光材料與元件”, 五南出版社, 2005。
    [5] E. F .Schubert, “Light-emitting diodes”, Cambridge University Press, (2003).
    [6] C. Wilmsen, H. Temkin and L. A. Coldren, “Vertical cavity surface emitting lasers design, fabrication, characterization, and applications”, Cambridge University Press, (2001).
    [7] A. Yariv and P. EH, “Photonics”, OXFORD, (2005).
    [8] S. M. Sze, “Physics of Semiconductor Device”, Wiley, (1981).
    [9] A. Dodabalapur, L. J. Rothberg, and T. M. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities”, Appl. Phys. Lett., 5, 2308-2310, (1994).
    [10] R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes”, Appl. Phys. Lett., 69, 1997-1999, (1996).
    [11] S. M. Jeong, Y. Akanishi, K. Shikawa and H. Akezoe, “Flexible Microcavity Organic Light-Emitting Diodes with Wide-Band Organic Distributed Bragg Reflector”, Jpn. J. Appl. Phys., 45, 737–739, (2006).
    [12] T. Fukuda, B. Ei M. Hashi, M. Chikawa, and Y. Aniguchi, “High coupling efficiency of microcavity organic light-emitting diode with optical fiber for as light source for optical interconnects”, Jpn. J. Appl. Phys., 46, 642–646, ( 2007).
    [13] S. F. Hsu, C. C. Lee, S. E. Hwang and C. H. Chena, “Highly efficient top-emitting white organic electroluminescent devices”, Appl. Phys. Lett., 86, 253508, (2005).
    [14] J. H. Seo, J. H. Seo, J. H. Park, and Y. K. Kim, “Highly efficient white organic light-emitting diodes using two emitting aterials for three primary colors red, green, and blue”, Appl. Phys. Lett., 90, 203507, (2007).
    [15] H. Zhang , H. You, J. Shi, W. Wang, S. Guo, M. Liu, and D. Ma, “Microcavity effects on emissive color and electroluminescent performance in organic light-emitting diodes”, Synthetic Metals, 156, 954–957, (2006).
    [16] X. W. Chen, W. C. H. Choy, and C. J. Liang, “Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity”, Appl. Phys. Lett., 91, 221112, ( 2007).
    [17] S. Tokitoa, T. Tsutsui, and Y. Taga, “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions”, J. Appl. Phys., 86, 2407-2411, (1999).
    [18] P. Schneeweiss, M. Sudzius, R. Gehlhaar, M. Hoffmann, V. G. Lyssenko,H. Fröb, and K. Leoa, “Observation of Kastler ring stimulated emission from an organic Microcavity”, Appl. Phys. Lett., 91, 051118, (2007).
    [19] J. Cao , X. Liu, M. A. Khan, W. Zhu, X. Y. Jiang, Z. L. Zhang, and S. H. Xu, “RGB tricolor produced by white-based top-emitting organic light-emitting diodes with microcavity structure”, Current Applied Physics, 7, 300–304, (2007).
    [20] C. L. Lin, H. W. Lin, and C. C. Wua, “Examining microcavity organic light-emitting devices having two metal mirrors”, Appl. Phys. Lett., 87, 021101, (2005).
    [21] T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes”, J. Appl. Phys., 93, 19-22, (2003).
    [22] X. Y. Sun, W. L. Li, M. L. Xu, B. Chu, D. F. Bi, B. Li, Y. W. Hu, Z. Q. Zhang, and Z. Z. Hu, “High-efficiency red phosphorescent organic light-emitting diodes based on metal-microcavity structure”, Solid-State Electronics, 52, 211–214, (2008).
    [23] X. Y. Liu, L. X. Wang, Y. Liu, S. L. E, J. M. Zhao, D. J. Wu, Y.Q. Ning, S. L. Wu, L. J. Wang, C. J. Liang, D. X. Zhao, Z. R. Hong, D. Zhao, C. Q. Jin, X .B. Jing, F. S. Wang, W. L. Li, and S. T. Lee, “Spontaneous emission properties of organic in plane optical microcavity”, Thin Solid Films, 363, 204-207, (2000).
    [24] T. Nakayama, and T. Tsutsui, “Enhancement in 1-D optical resonator devices with organic films”, Synthetic Metals, 91, 57-59, (1997).
    [25] P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer”, J. Appl. Phys., 101,101-104, (2007).
    [26] S. Han, C. Huang, and Z. H. Lua, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer” J. Appl. Phys., 97, 093102, (2005).

    下載圖示 校內:2011-08-05公開
    校外:2011-08-05公開
    QR CODE