簡易檢索 / 詳目顯示

研究生: 尹正凱
Yin, Zheng-Kai
論文名稱: 設置時間和工作順序有關之混合式流程生產排程問題
Hybrid Flowshop with Sequence Dependent Setup Times
指導教授: 張秀雲
Zhang, Xiu-yun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 123
中文關鍵詞: 混合式流程生產設置時間和工作順序有關蟻群演算法
外文關鍵詞: Hybrid Flowshop, Sequence Dependent Setup Times, Ant Colony Algorithm
相關次數: 點閱:80下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    許多產品的製造多採用混合式流程方式生產,將不同的處理階層加以串聯並於每一階層配置多台加工機台,以達到提昇處理效率減少總完工時間的目的。另外,於處理完一個工作後常常有一段設置時間,例如作模具調整等,再進行處理下一個工作,而在許多產品生產時,這種設置時間常會與工作的順序有關,使生產排程更具複雜性。由於混合式流程的可行解太過龐大,在工作數量較大時,即使以電腦亦無法於合理時間內求得最短總完工時間的正確解,而必須採用啓發式演算法以尋優過程逐步評估出排程之較佳解。本研究之目的即針對與工作順序有關之混合式流程生產型態,以修正之蟻群演算法評估不同混合式流程生產型態的排程,目標是使總完工時間最小。分析之生產型態包括4種工作數、3種工作階層數,每一階層有2種不同的平行等效機台的安排方式,以及4種平均設置與處理時間的比例,共計有96種組合型態。另外,設計了5種第一個工作及接續工作的選擇方式,以探討其對排程結果的影響。經由480組案例各運算10次,並統計出平均與最佳總完工時間、對應之迭代次數與電腦運算時間。研究結果建議了有效的排程方法,並驗證此排程方法可經由接續工作選擇以吸收設置時間使總完工時間縮短的效果,同時也分析了各生產型態參數變化時對混合式流程生產總完工時間的影響,並將各案例分析所得的總完工時間等結果列於附錄中供有興趣者參考。
    關鍵字:混合式流程生產,設置時間和工作順序有關,蟻群演算法

    Abstract
    Many products are fabricated with hybrid flowshop, which has a number of stages in series and several parallel machines in each stage, in order to improve the efficiency and reduce the total completion time. On the other head, when a job is completed, a setup time such as mold adjustment is required before processing the next job. The setup time is often dependent on the job sequence and make the scheduling more complicated. Because the feasible solutions of hybrid flowshop are very large when the number of jobs are increased, the minimum completion time can not be reached within a reasonable time. We must use heuristic algorithm to figure out this question step by step to have a better solution. The purpose of this research is to deal with scheduling problem of hybrid flow shop with sequence dependent setup times. The modified ant colony optimization(ACO) evaluation procedure is developed and the target is to minimize the makespan. The production pattern analyzed include four kinds of job numbers, three kinds of stage numbers, two kinds of equivalent parallel machines in each stage and four kinds of setup times, summed up to 96 categories. Also we designed five kinds of methods to select the first job and the job sequence to discuss their effectiveness on the scheduling. Via 480 cases and compute ten times for each case to get the average and best makespan, corresponding iteration number and computing time. The result of this research suggest the effective scheduling method, and verify that this method can reduce the makespan through better selection of the job sequence. Also the parameter importance on the makespan are evaluated. The related results of makespan for all 480 cases are listed in the appendix for reference.
    Key words:Hybrid Flowshop,Sequence-Dependent Setup Times,Ant Colony System

    目 錄 Abstract..........................................................................................................................I 中文摘要......................................................................................................................II 誌謝............................................................................................................................III 目錄..............................................................................................................................IV 圖目錄..........................................................................................................................VI 表目錄........................................................................................................................VII 第一章 緒論..............................................................................................................1 1.1 研究背景與動機..................................................................................................1 1.2 研究目的..............................................................................................................3 1.3 研究範圍..............................................................................................................3 1.4 研究架構與流程..................................................................................................5 第二章 文獻探討......................................................................................................7 2.1 流程式生產相關文獻..........................................................................................8 2.2 設置時間與工作順序有關之相關文獻..............................................................9 2.3 啟發式演算法及其應用在流程式生產問題的相關文獻................................10 2.3.1 基因演算法..........................................................................................10 2.3.2 粒子群游移演算法..............................................................................12 2.3.3 禁忌搜尋法..........................................................................................12 2.3.4 模擬退火法..........................................................................................13 2.3.5 蟻群演算法..........................................................................................14 2.4 蟻群演算法應用於混合式流程生產問題的相關文獻....................................17 2.5 小結....................................................................................................................19 第三章 研究方法....................................................................................................20 3.1 問題描述與假設................................................................................................20 3.2 整數規劃模式建立............................................................................................21 3.3 蟻群演算法之基本流程....................................................................................23 3.4 修正之蟻群演算法步驟....................................................................................26 3.5 混合式流程生產排程之案例說明....................................................................37 第四章 案例研究與分析........................................................................................42 4.1 工作選擇機率函數中各參數之採用分析........................................................42 4.2 案例規劃與編號................................................................................................43 4.3 案例分析與統計結果........................................................................................44 4.3.1 總完工時間之分析結果......................................................................44 4.3.2 其他之分析結果..................................................................................46 4.4 電腦運算時間分析............................................................................................51 4.5 案例分析結果小結............................................................................................52 第五章 結論與建議................................................................................................54 參考文獻......................................................................................................................56 附錄A 不同工作數與最佳總完工時間關係圖.........................................................62 附錄B 各案例之總完工時間結果.............................................................................70 附錄C 不同工作數最佳總完工時間比值...............................................................106 附錄D 不同階層數最佳總完工時間比值...............................................................109 附錄E 不同機台數最佳總完工時間比值................................................................112 附錄F 不同設置時間最佳總完工時間比值............................................................118 圖目錄 圖1.1 混合式流程生產示意圖...............................................................................3 圖1.2 研究流程圖...................................................................................................6 圖3.1 方法A演算法流程圖.................................................................................32 圖3.2 方法B演算法流程圖.................................................................................35 圖3.3 設置時間與工作順序有關之排程甘特圖..................................................41 圖A-1 不同工作數與最佳總完工時間關係圖.......................................................62 表目錄 表3-1 各工作於每一階層之處理時間..................................................................38 表3-2 各工作為第一個要加工的工作時所需之設置時間……………………..38 表3-3 各工作於階層一之相對設置時間………………………………………..38 表3-4 各工作於階層二之相對設置時間………………………………………..39 表4-1 不同參數組合對應之平均總完工時間……………………………....…..43 表4-2 各工作型態之平均RPD值..........................................................................45 表4-3 工作數增加其最佳總完工時間之比值變化平均值…………………......47 表4-4 階層數增加其最佳總完工時間之比值變化平均值……………..............48 表4-5 機台數增加其最佳總完工時間之比值變化平均值……………………..49 表4-6 不同平均設置時間其最佳總完工時間之比值………………………......50 表4-7 B42c案例用MA3方法之10組計算結果…………………………….......51 表A-1 各案例總完工時間............……………………………………....………...70 表A-2 各案例總完工時間標準差及變異係數……....……………………...........76 表A-3 各案例總完工時間與下界值之誤差比值……....…………………...........82 表A-4 各案例迭代次數...........................................................................................88 表A-5 各案例電腦運算時間...................................................................................94 表A-6 平均總完工時間之相對百分誤差(RPD)值……………………………....100 表A-7 最佳總完工時間之相對百分誤差(RPD)值……………………………....103 表B 不同工作數最佳總完工時間比值…………………………………….....106 表C 不同階層數最佳總完工時間比值…………………………………….....109 表D 不同機台數最佳總完工時間比值…………………………………….....112 表E 不同設置時間之最佳總完工時間比值……………………………….....118

    參考文獻
    中文部分
    王立志。 (2011)。記憶體模組產業供應鏈生產規劃模式之研究。行政院國家科學委員會補助專題研究計畫成果報告。
    英文部分
    Ahmadizar, F. A new ant colony algorithm for makespan minimization in permutation
    flow shops. (2012). Computers and Industrial Engineering, 63, 355–361.
    Allahverdi, A., Ng, C.T., Cheng, T.C.E., and Kovalyov, M.Y. (2008). A survey of
    scheduling problems with setup times or costs. European Journal of Operational
    Research, 187, 985–1032.
    Alaykyran, K., Engin, O., and Alper, D. (2007). Using ant colony system optimization
    to solve hybrid flow shop scheduling problems. International Journal of
    Advanced Manufacturing Technology, 35, 541-550.
    Arnaout, J.P., Rabadi, G., and Musa, R. (2010). A two–stage ant colony optimization
    algorithm to minimize the makespan on unrelated parallel machines with
    sequence–dependent setup times. Journal of Intelligent Manufacturing, 21,
    693–701.
    Behnamian, J., Fatemi Ghomi, S. M. T., and Zandieh, M. (2010). Development of a
    hybrid metaheuristic to minimize earliness and tardiness in a hybrid flowshop
    with sequence–dependent setup times. International Journal of Production
    Research, 48, 1415–1438.
    Chen, F. and Lee, C. Y. (2009). Minimizing the makespan in a two–machine
    crossing–docking flow shop problem. European Journal of Operation Research,
    16, 59–72.
    Dorigo, M., Dicaro, G., and Gambardella, L.M. (1999). Ant algorithms for discrete
    optimization. Arti Life 5:137-172.
    Figielska, E. (2008). A new heuristic for scheduling the two-stage flowshop with
    additional resources. Computers and Industrial Engineering, 54, 750–763.
    Gajpal, Y., Rajendran, C., and Ziegler, H. (2006). An ant colony algorithm for
    scheduling in flowshops with sequence-dependent setup times of jobs.
    International Journal of Advanced Manufacturing Technology, 30, 416–424.
    Gajpal, Y. and Rajendran, C. (2006). An ant–colony optimization algorithm for
    minimizing the completion–time variance of jobs in flowshops. International
    Journal of Production Economics, 101, 259–272.
    Garey, M.R. and Johnson, D. S., Computers and Intractability. (1979). W. H. Freeman
    and Co., San Francisco.
    Gupta, J.N.D. (1988). Two-stage hybrid flow shop scheduling problem. J Oper Res
    Soc. 39(4):359-364.
    Johnson, S.M.(1954). Optimal two and three stage production schedules with setup
    times include. Naval Research Logistics Quarterly 1, 61-67.
    Jungwattanakit, J., Reodeeha, M., Chaovalitwongse, P., and Werner, F. (2008).
    Algorithms for flexible flow shop problems with unrelated parallel machines,
    setup times, and dual criteria. International Journal of Advanced Manufacturing Technology, 37, 354–370.
    Karimi, N., Zandieh, M., and Karmooz, H.R. (2010). Bi objective groupscheduling
    hybrid flexible flowshop: A multi–phase approach. Expert System with
    Applications, 37, 4024–4032.
    Keskinturk, T., Yildirim, M.B., and Barut, M. (2012). An ant colony optimization
    algorithm for load balancing in parallel machines with sequence–dependent
    setup times. Computers & Operations Research. 39, 1225–1235.
    Khalouli, S., Ghedjati, F., and Hamzaoui, A. (2010). A meta–heuristic approach to
    solve a jit scheduling problem in hybrid flow shop. Engineering Applications of
    Artificial Intelligence, 23, 765–771.
    Kurz, M.E. and Askin., R.G. (2003). Comparing scheduling rules for flexible flow
    lines. International Journal of Production Economics, 85, 371–388.
    Kurz, M.E. and Askin., A.G. (2004). Scheduling flexible flow lines with
    sequence–dependent setup times. European Journal of Operational Research,
    159,66–82.
    Liao, C.J. and Juan, H.C. (2007). An ant colony optimization for single–machine
    tardiness scheduling with sequence–dependent setups. Computers and Operations Research, 34, 1899–1909.
    Lin, B.M.T., Lu, C.Y., Shyu, S.J., and Tsai, C.Y. (2008). Development of new
    features of ant colony optimization for flowshop scheduling. International
    Journal of Production Economics, 112, 742–755.
    Mirabi, M. (2011). Ant colony optimization technique for the sequence–dependent
    flowshop scheduling problem. International Journal of Advanced
    Manufacturing Technology. 55, 317–326.
    Moghaddam, R. T., Safaeic, N., and Sassanib, F. (2009). A gemetic algorithm for the
    flexible flow line scheduling problem with processor blocking. Computers &
    Operations Research, 36, 402 – 414.
    Naderi, B., Zandieh, H., and Roshanaei, V. (2009). Scheduling hybrid flowshops
    with sequence dependent setuptimes to minimize makespan and maximum
    tardiness. International Journal of Advanced Manufacturing Technology. 41,
    1186–1198.
    Naderi, B., Zandieh, H., Khaleghi, G.B.A., and Roshanaei, V. (2009). An
    improved simulated annealing for hybrid flowshops with sequence–dependent
    setup and transportation times to minimize total completion time and total
    tardiness. Expert System with Applications, 36, 9625–9633.
    Naderi, B., Zandieh, H., and Shirazi, M.A.H.A. (2009). Modeling and scheduling a
    case of flexible flowshops : total weighted tardiness minimization. Computers
    and Industrial Engineering, 57, 1258–1267.
    Neto, T. R. F. and Folho, G. M.(2011). An ant colony optimization approach to a
    permutational flowshop scheuling problem with outsourcing allowed.
    Computers and Opeartions Research, 38, 1286–1293.
    Pan, Q.Ke, Pan M., Fatih, T., Suganthan,P.N., and Ozge, B. (2012). A variable
    iterated greedy algorithm with differential evolution for solving no–idle
    Flowshops. Lecture Notes In Computer Science, 7629, 128–135.
    Pinedo, M.L. (1995). Scheduling, Theory, Algorithms, and Systems. Prentice- Hall,
    Englewood Cliffs, NJ.
    Rajendran, C.and Ziegler, H. (2004). Ant–colony algorithms for permutation
    flowshop scheduling to minimize makespan/total flowtime of jobs. European
    Journal of Operational Research, 155, 426–438.
    Rajendran, C. and Ziegler, H. (2005). Two ant–colony algorithms for minimizing total
    flowtime in permutation flowshops. Computers and Industrial Engineering, 48,
    789–797.
    Ruiz, R. and Maroto, C. (2006). A genetic algorithm for hybrid flowshops with
    sequence dependent setup times and machine eligibility. European Journal of
    Operational Research, 169, 781–800.
    Seckiner,U. S. and Kurt, M. (2008). Ant colony optimization for the job rotation
    scheduling problem. Applied Mathematics and Computation, 201, 149–160.
    Shyu, S.J., Lin, B.M.T., and Yin, P.Y. (2004). Application of ant colony optimization
    for no-wait flow shop scheduling problem to minimize the total completion
    time. Computers and Industrial Engineering,47, 181–193.
    Sortrakul, N., Nachtmann, H.L., and Cassady, C.R. (2005). Genetic algorithms for
    integrated preventive maintenance planning and production scheduling for a
    single machine. Computers in Industry, 56, 161–168.
    Stuetzle T. and Hoos, H.H. (1998). Improvements on the ant system: introducing the
    max–min ant system. In: RF Albrecht, GD Smith, NC Steele (Eds) Proceelings
    of the 3rd International Conference on Artificial Norwich, UK, April 1997, pp
    245-249.
    Tavares N.R.F. and Godinho, F.M. (2011). An ant colony optimization approach to a
    permutational flow shop scheduling problem with outsourcing allowed.
    Computers and Operations Research, 38, 1286–1293.
    Tkindt, V., Monmarche, N., Tercinet, F., and Laugt, D. (2002). An ant colony
    optimization algorithm to solve a 2–machine bicriteria flowshop scheduling
    problem. European Journal of Operational Research, 142, 250–257.
    Tseng, C.T. and Liao, C.J. (2008). A particle swarm optimization algorithm for
    hybrid flow shop scheduling with multiprocessor tasks. International Journal of
    Production Research. 46, 4655-4670.
    Tseng, L.Y. and Lin, Y.T. (2010). A genetic local search algorithm for minimizing
    total flow time in the permutation flow shop scheduling problem. Int. J.
    Production Economics, 127, 121–128.
    Wang, X. and Tang, L. (2009). A tabu search heuristic for the hybrid flowshop
    scheduling with finite intermediate buffers. Computers and Operations
    Research, 36, 907-918.
    Yagmahan, B. and Yenisey, M.M. (2008). Ant colony optimization for
    multi-objective flowshop scheduling problem. Computers & Industrial
    Engineering, 54, 411–420.
    Yagmahan, B. and Yenisey, M.M. (2010). A multi-objective ant colony system algorithm for flow shop scheduling problem. Expert Systems with Applications, 37, 1361-1368.
    Yaurima, V., Burtseva, L., and Tchernykh A. (2009). Hybrid flowshop with unrelated
    machines, sequence-dependent setup time, availability constraints and limited
    buffers. Computers and industrial engineering, 56, 1452-1463.
    Ying, K.C. and Liao, C.J. (2004). An ant colony system for permutation flow-shop
    sequencing. Computers & Operations Research, 31, 791–801.
    Ying, K.C. and Lin, S.W. (2007). Multi-heuristic desirability ant colony system
    heuristic for non-permutation flowshop scheduling problems. International
    Journal of Advanced Manufacturing Technology, 33, 793–802
    Ying, K.C. and Lin, S.W. (2006). Multiprocessor task scheduling in multistage hybrid flow-shops: an ant colony system approach. International Journal of Production Research, 44, 3161–3177.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE