簡易檢索 / 詳目顯示

研究生: 薛志鴻
Hsueh, Chih-Hung
論文名稱: 質子交換膜型燃料電池電極在CO存在下 之阻抗分析
Impedance Analysis for the Electrode of Proton Exchange Membrane Fuel Cell in the presence of CO
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 211
中文關鍵詞: 交流阻抗分析一氧化碳質子交換膜型燃料電池燃料電池
外文關鍵詞: ACimpedance, CO, PEMFC, fuel cell
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    以氫氣為陽極進料之質子交換膜型燃料電池,若氫氣中存在少量之CO,將導致電池放電效能嚴重衰退。本研究以含浸法製備不同白金與釕組成比之Pt-Ru/C觸媒,分別使用甘油與水為電極漿料溶劑製備膜電極組,在不同CO濃度下,進行電池放電測試,以三極式系統,利用放電極化曲線與交流阻抗分析,對電池放電效能進行探討。
    以含浸法製備觸媒,以H2PtCl6及RuCl3為原料,V XC-72碳粉為載體,使用甲醇為還原劑,在70℃回流溫度下,可成功製備得不同白金-釕組成比之Pt-Ru/C觸媒。隨著釕的組成比由0增加到3.33,觸媒中之金屬粒徑由5~12nm降至2~6nm,且分散性越佳。釕-白金原子比(Ru/Pt)為1.13之觸媒,空氣環境中熱處理溫度在350℃以下,觸媒可維持穩定之結構。
    本研究成功建立三極式系統進行電池之放電效能測試,相較於一般二極式系統只能得到兩極阻抗值之總和,此三極式系統在全電池放電下,可針對陽極或陰極個別造成之阻抗行為進行探討。
    本研究亦提出一等效電路模組,用於模擬PEM燃料電池陰極與陽極之交流阻抗分析結果。模擬計算出之陰極電荷轉移電阻,與陰極極化曲線計算所得之電荷轉移電阻相比較,兩電阻值相當近似。於氫氣中存在CO的操作條件下,由交流阻抗分析之結果發現CO毒化於陽極產生之過電位,是由陽極電荷轉移電阻與電極層中電解質電阻共同增加所造成。
    於氫氣中存在25與100 ppm CO的操作條件下,在放電過程中,與純氫氣進料相比,電池放電電位受CO毒化現象而明顯下降,此電位降主要反映在陽極過電位之增加。以陽極極化曲線計算所得之陽極電荷轉移電阻,隨放電電流增加而增加,在達一最大值後下降。CO濃度越高,此電阻最大值越高。同時隨著陽極中釕負載量的增加,此電阻最大值隨之降低。在含100 ppm CO之氫氣中,添加2% O2的操作條件下,因CO毒化造成之電池電位降幾乎可完全消除,同時隨著陽極組成中釕負載量的增加,所需添加之O2量隨之減少。

    Abstract

    In a proton exchange membrane fuel cell (PEMFC), when hydrogen is the anodic feed, the presence of CO in hydrogen causes a serious decay in cell performance. In this study, Pt-Ru/C catalysts were obtained with various ratios of platinum to ruthenium with impregnation method. Discharging test of the cell with CO presence in hydrogen were carried out in a three-electrode mode system. The performance of the full cell was demonstrated by the discharging polarization curves and AC impedance analysis.
    The catalyst was prepared by using impregnation method whereat H2PtCl6, RuCl3, V XC-72 carbon powder, methanol were employed as the source of platinum, ruthenium, support and reducing agent, respectively. After refluxed in 70 ℃, different catalysts with various Pt-Ru/C ratios were obtained successfully. While the content of ruthenium in the catalyst increased from 0 to 3.33, the particle size of metal in the catalyst was reduced from 5~12 to 2~6 nm, and the dispersion of the metal in the catalyst was improved. The structure of catalyst with Ru/Pt ratio 1.13 were stable after calcination below 350 ℃.
    The discharging performance of the cell was carried out in a three-electrode mode system successfully. In general, the resistances obtained from a two-electrode mode system are the sum of two electrodes. But in a three-electrode mode system, the anodic and cathodic impedances could be studied individually during the cell discharging.
    In this study, an equivalent circuit model was proposed to explain the results of AC impedance analysis for the anode and cathode of the PEMFC. The cathodic charge transfer resistance obtained from AC impedance analysis was very similar to that obtained from the polarization curves. With the CO presence, the experimental results of AC impedance analysis suggested that the overpotential due to CO poisoned at anode was contributed by the resistances of both charge transfer and electrolyte in the catalyst layer.
    Comparing the discharging process operated in the atmosphere of 25 and 100 ppm CO in hydrogen with that operated in pure hydrogen, the discharging potentials obviously dropped off due to the effect of CO poisoning. The anodic charge transfer resistance calculated from the anodic polarization curve increased with the discharging current and declined after a maximum value, whereat the potential drop caused the increasing of anodic overpotential. The maximum value of this charge transfer resistance increased with the CO concentration. On the other hand, higher ruthenium loading gave smaller value of this maximum resistance. The potential drop, caused by CO poisoned catalyst, can be overcome by adding 2% O2 into hydrogen gas containing 100 ppm CO. As the ruthenium loading in the catalyst increased, the required amount of O2 decreased.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅴ 目錄 Ⅵ 圖目錄 Ⅹ 表目錄 ⅩⅨ 符號說明 ⅩⅩ 第一章 緒論 1-1 燃料電池簡介 1 1-1-1 鹼性燃料電池 2 1-1-2 磷酸燃料電池 6 1-1-3 質子交換膜燃料電池 6 1-1-4 熔融碳酸鹽電池 7 1-1-5 固態氧化物燃料電池 7 1-1-6各電池性能的比較 8 1-2 質子交換膜燃料電池的發展 8 1-2-1一氧化碳之毒化現象 9 1-1-1a 合金觸媒電極 10 1-1-1b 添加物的使用 14 1-2-2陽極觸媒Pt/C或Pt-M/C合金觸媒之製備 15 1-2-2a 膠體法 15 1-2-2b 微乳化法 15 1-2-2c 含浸法 16 1-2-3電極的製備方式 17 1-2-3a Nafion簡介 17 1-2-3b 三合一式膜電極組 21 1-2-3c 五合一式膜電極組 22 1-3 研究動機 22 第二章 原理 2-1 燃料電池的構造及其操作 23 2-1-1 反應氣體在電極層內部的輸送現象 23 2-1-2 質子交換膜內的水管理 25 2-2電池放電的極化現象 26 2-2-1 活性過電壓 27 2-2-2 歐姆過電壓 28 2-2-3 質傳過電壓 29 2-2-4 電池阻抗的計算 29 2-3 釕催化一氧化碳之反應機制 34 2-4 交流阻抗分析 35 2-4-1交流阻抗分析原理 35 2-4-2 一般電化學系統之交流阻抗分析 39 2-4-3 靈感現象與負的電阻值 44 2-4-4 燃料電池放電之阻抗分析 46 第三章 實驗設備與步驟 3-1 藥品與材料 56 3-2 儀器設備 57 3-3 三極式膜電極組的製備 59 3-3-1 白金-釕/碳合金觸媒的製備 59 3-3-2 電池氣體擴散電極的製備 60 3-3-3 質子交換膜(Nafion membrane)的前處理 61 3-3-4 熱壓法製備膜電極組 61 3-4 放電測試 65 3-4-1 單電池組的組裝 65 3-4-2 電池放電測試系統的組裝 65 3-5 交流阻抗分析 69 3-6 觸媒與電極特性分析 71 3-6-1原子吸收光譜分析(AA) 71 3-6-2穿透式電子顯微鏡分析(TEM) 72 3-6-3 X光繞射分析(XRD) 72 3-6-4能譜儀分析(EDS) 72 3-6-5掃瞄式電子顯微鏡分析(SEM) 73 第四章 結果與討論 4-1 觸媒特性之分析 78 4-1-1原子吸收光譜分析(AA)與能譜儀分析(EDS) 78 4-1-2 X光繞射分析(XRD)與穿透式顯微鏡分析(TEM) 85 4-2 電極之結構分析 96 4-3 電池放電之效能分析 101 4-3-1膜電極組之活化 101 4-3-2電池放電極化曲線之量測 103 4-3-3以甘油為電極漿料溶劑所製備之膜電極組 109 4-3-3a陰極氣體的增濕溫度對電池放電效能的影響 109 4-3-3b陽極氣體的增濕溫度對電池放電效能的影響 111 4-3-3c電池的操作溫度對放電效能的影響 115 4-3-4以水為電極漿料溶劑所製備之膜電極組 122 4-3-4a 陰極氣體的增濕溫度對電池放電效能的影響 122 4-3-4b 陽極氣體的增濕溫度對電池放電效能的影響 123 4-3-5不同電極漿料溶劑所製備之膜電極組效能之比較 129 4-3-6不同一氧化碳含量下電池放電效能之影響 133 4-3-6a陽極組成Pt : Ru = 1 : 0.12 133 4-3-6b陽極組成Pt : Ru = 1 : 0.38 145 4-3-6c陽極組成Pt : Ru = 1 : 1.13 149 4-3-6d陽極組成Pt : Ru = 1 : 3.33 153 4-3-6e不同陽極組成綜合探討 158 0 ppm CO 158 25 ppm CO. 164 100 ppm CO. 169 4-4 電池放電之交流阻抗分析 175 4-4-1以甘油為電極漿料溶劑所製備之膜電極組 178 4-4-1a陰極氣體的增濕溫度下電池放電之交流阻抗分析 178 4-4-1b不同電池的操作溫度下電池放電之交流阻抗分析 180 4-4-2不同電極漿料製備之膜電極組效能之比較 182 4-4-3不同一氧化碳含量下電池放電之交流阻抗分析 184 4-4-3a陽極組成Pt : Ru = 1 : 0.12 184 4-4-3b陽極組成Pt : Ru = 1 : 0.38 189 4-4-3c陽極組成Pt : Ru = 1 : 1.13 191 4-4-3d陽極組成Pt : Ru = 1 : 3.33 191 4-4-3e不同陽極組成綜合探討 194 0 ppm CO 194 25ppm CO 196 100 ppm CO 196 4-5 放電極化曲線與交流阻抗分析結果之比較 200 第五章 結論 207 參考文獻 209 自述 221

    參考文獻

    1. James Larminie, Andrew Dicks, “Fuel Cell Systems Explained”, John Wiley & Son, Inc.,p1(2000)
    2. Y. W. Rho, O. A. Velev, and S. Srinivasan, J. Electrochem. Soc., vol. 141, p. 2084. (1994).
    3. J. Giner and C. Hunter, “Model of a Hydrogen-Air Fuel Cell with Alkaline Electrolyte”, J. Electrochem. Soc., Vol. 116, p. 1124, (1969.)
    4. 左俊德、何玉麗、林祐民、張詩韻,“台灣燃料電池產業發展策略之研究”,財團法人台灣經濟研究院,2-6頁(2000)。
    5. 鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,第二十五卷第四期。161頁,(1995)。
    6. O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC)”, J. Appl. Electrochem. , vol. 22, p. 995 (1992)
    7. 鄭煜騰、鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,第二十七卷 第二期,118頁,(1997)。
    8. A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook” Van Nostrand Reinhold, New York (1989).
    9. K. Scott, W.M. Taama, P. Argyropoulos, “Engineering Aspects of the Direct Methanol Fuel Cell System”, J. Power Sources, vol. 79, p. 43, (1999).
    10. E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan, “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells ” J. Electrochemical. Soc., vol. 135, p.2209(1998) 。
    11. G. J. K. Acres, J. G. Frost, G. A. Hards, R. J. Potter, T. R. Ralph, D. Thompsett, G. T. Burstein, G. J. Hutchings, “Electrocatalysts for Fuel Cells” , Catalysis Today, vol. 38, p. 393 (1997).
    12. 李國霖,熔融碳酸鹽燃料電池的研發,能源季刊,第二十四卷 第四期,57頁,(1997)。
    13. Leo J. M. J. Blomen, and M. N. Megerwa, “Fuel Cell Systems” , Plenum Press, New York and London (1993).
    14. 鄭耀宗,各種燃料電池技術的進展分析,台電工程月刊 第601期,9頁, (1998)。
    15. 蔡克群,“我國PEMFC之發展方向及策略”,化工-中國化學工程學會,第四十九卷第三期,22頁(2002) 。
    16. M. S. Wilson, S. Gottesfeld,”Thin-Film catalyst layers for polymer electrolyte fuel cell electrodes” J. Appl. Electrochemistry, 22, p.1-7(1992)
    17. S. Y. Cha and W. M. Lee,”Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface” J. Electrochemical Soc., vol.146(11), p4055-4060(1999)
    18. H. F. Oetjen, V. M. Schmidt, U. Stimming, and F. Trila,”Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas” J. Electrochemical Soc. Vol. 143, No. 12, p3838(1996)
    19. F. A. de Bruijn , D.C. Papageorgopoulos, E. F. Sitters, G.J.M Janssen , “The influence of carbon dioxide on PEM fuel cell anodes”Journal of Power Sources 110, p117-124(2002)
    20. Hubert A. Gasteiger, Nenad Markovic, Philip N. Ross, Jr., and Elton J. Cairns “CO Electrooxidation on Well-Characterized Pt-Ru Alloys” J. Phys. Chem. Vol. 98 p617-625 (1994)
    21. Yu Morimoto, Ernest. B. Yeager”CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes”, Journal of Electroanalytical Chemistry Vol.441, p77-81(1998)
    22. Eleanor M. Crabb, Robert Marshall, and David Thompsett”Carbon Monoxide Electro-oxidation Properties of Carbon-Supported PtSn Catalysts Prepared Using Surface Organometallic Chemistry”, Journal of The Electrochemical Society Vol. 147 p4440-4447(2000)
    23. Sanjeev Mukerjee and James McBreen “An In X-Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon-Supported Pt Electrocatalysts”, Journal of The Electrochemical Society Vol.146 p600-606(1999)
    24. B,N.Grgur, N.M.Markovic and P. N. Ross, “Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys”, Electrochimica Acta vol.43 p3631-3635(1998)
    25. P. Gouerec, M. C. Denis, D. Guay, J. P. Dodelet, and R. Schulz “High Energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel Cells and Their Tolerance to CO”, Journal of The Electrochemical Society Vol.147 p3989-3996(2000)
    26. B. N. Grgur, G. Zhuang, N. M. Markovic, and P. N. Ross, Jr., “Electrooxidation of H2/CO Mixtures on a Well-Characterized Pt75Mo25 Alloy Surface”, J. Phys. Chem vol.101 p3910-3913(1997)
    27. B. N. Grgur, G. Zhuang, N. M. Markovic, and P. N. Ross, Jr., “Electrooxidation of H2/CO, and H2/CO Mixtures on a Well-Characterized Pt70Mo30 Bulk Alloy Electrode”, J. Phys. Chem. Vol.102 p2494-2501(1998)
    28. S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N. Grgur, B. N. Grgur, N. M. Markovic, P. N. Ross, J. R. Giallombardo, and E. S. De Castro, “Investigatoion of Enhanced CO Tolerance in Proton Exchange Membrane Fuel Cells by Carbon Supported PtMo Alloy Catalyst”, Electrochemical and Solid-State Letters Vol.2 p12-15(1999)
    29. M. Gotz and H. Wendt”Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Electrochimica Acta Vol.43 p3637-3644(1998)
    30. Erik Reddington, Anthony Sapienza, Bogdan Gurau, Rameshkrishnan Viswanathan, S. Sarangapani, Eugene S. Smotkin, Thomas E. Mallouk”Combinatorial Electrochemistry:A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts”, SCIENCE, Vol.280 p1735(1998)
    31. D. C. Papageorgopoulos , M. Keijzer, F. A. de Bruijn”The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3electrocatalysts in the quest for improved CO tolerant PEMFC anodes”, Electrochimica Acta Vol.48 p197-204(2002)
    32. 黃倬、屠海令、張冀強、詹峰,質子交換膜燃料電池的研究發展與應用,北京冶金工業出版社,p31~32(2000)
    33. Shimshon Gottesfeld and Judith Pafford “A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperatures”, J. Electrochem. Soc. P2651(1988)
    34. V. M. Schmidt, H. F. Oetjen, and J. Divisek”Performance Improvement of a PEMFC Using Fuels with CO by Addition of Oxygen-Evolving Compounds”, J. Electrochem. Soc. Vol. 144 L237(1997)
    35. J. Divisek, H. F. Oetjen, V. Peinecke, V. M. Schmidt and U. Stimming”Components for PEM fuel cell systems using hydrogen and CO containing fuels”, Electrochimica Acta Vol. 43 p3811-3815(1988)
    36. R. J. Bellows , E. Marucchi-Soos, and R. P. Reynolds”The Mechanism of CO Mitigation in Proton Exchange Membrane Fuel Cells Using Dilute H2O2 in the Anode Humidifier”, Electrochemical and Solid-State Letters Vol.1 p69-70(1998)
    37. Bernd Rohland , Vojtech Polzak “The PEMFC-integrated CO oxidation-a novel method of simplifying the fuel cell plant”, Journal of Power Sources Vol.84 p183-186(1999)
    38. M. C. Denes, P. Gouerec, D. Guay, J. P. Dodelet, G. lalande and R. Schulz “Improvement of the high energy ball-milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells”, Journal of Applied Electrochemistry Vol.30 p1243-1253(2000)
    39. Gouerec P., M. C. Denis, D. Guay, j. P. Dodelet, and R. Schulz, “High energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel Cells and Their Tolerance to CO”,J. Electrochem. Soc., 147, p3989(2000)
    40. Hartmut Wendt, Gerhard Kreysa, “Electrochemical Engineering”, Springer-Verlag Berlin Heidelberg New York, p278(1999).
    41. Seol-Ah Lee, Kyung-Won Park, Jong-Ho Choi, Boo-Kil Kwon, and Yung-Eun Sung “Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells”, Journal of The Electrochemical Society, 149 A1299-A1304(2002)
    42. Xin Zhang and Kwong-Yu Chan “Waater-in-oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties”American Chemical Society Vol.15 p451-459(2003)
    43. M.J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza “Development and performance characterization of new electrocatalysts for PEMFC” Journal of Power Sources Vol.106 p206-214(2002)
    44. Masahiro Kishida, Kazuyuki Umakoshi, Jun-ichi Ishiyama, Hideo Nagata, Katsuhiko Wakabayashi “Hydrogenation of carbon dioxide over metal catalysts prepared using microemulsion”, Catalysis Today p355-359(1996)
    45. Won-Young Kim, Hiroki Hayashi, Masahiro Kishida, Hideo Nagatz, Katsuhiko Wakabayashi “Methanol synthesis from syngas over supported palladium catalysts prepared using water-in-oil microemulsion”, Applied Catalysis A: General Vol.169 p157-164(1998)
    46. Giovanni Neri, Candida Milone, Andrea Donato, Lucina Mercadante & A. Maria Visce “Selective Hydrogenation of Citral over Pt-Sn Supported on Activated Carbon”, J. Chem Tech. Biotechnol. Vol.60 p83-88(1994)
    47. G. Neri, C. Milone, S. Galvagno, A.P.J. Pijpers, J. Schwank “Characterization of Pt-Sn/carbon hydrogenation catalysts”, Applied Catalysis A:General Vol.227 p105-115(2002)
    48. A.Erhan Aksoylu, M. Madalena A. Freitas, Jose L. Figueiredo “Bimetallic Pt-Sn catalysts supported on activated carbon.Ⅱ. CO oxidation” , Catalysis Today Vol.62 p337-346 (2000)
    49. A. Honji, T. Mori, and Y. Hishinuma “Platinum Dispersed on Carbon Catalyst for a Fuel Cell:A Preparation with Sorbitan Monolaurate” J. Electrochem. Soc. Vol.137 p2084(1990)
    50. 林賜岱,“直接甲醇燃料電池陽極反應機制之研究”,國立台灣科技大學化學工程系碩士論文(2002)
    51. S. Wasmus, W. Vielstcich “Methanol oxidation at carbon supported Pt and Pt-Ru electrodes: an on line MS study using technical electrodes” Journal of Applied Electrochemistry Vol.23 p120-124(1993)
    52. J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan and S. A. Weeks “Porous Carbon Anodes For The Direct Methanol Fuel Cell-Ⅰ. The Role Of The Reduction Method For Carbon Supported Platinum Electrodes”, Electrochimica Acta, Vol.35 p199-207(1990)
    53. A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi, Anovel route to prepare stable Pt-Ru/C electrocatalysts for polymer electrolyte fuel cell”, Electrochimica Acta 48, p255-262(2002)
    54. A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, “Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells”, Journal of Power Sources 55, p159-166(1995)
    55. H. E. Van Dam and H. Van Bekkum “Preparation of Platium of Activated Carbon”, Journal of Catalysis Vol.131, p335-349(1991)
    56. R. Pattabiraman “Preparation of Highly Dispersed Platinum Catalysts for Methanol Fuel Cells”, Bulletin of Electrochemistry p352-355(1993)
    57. R. Pattabiraman “Development of Playinum-Ruthenium Alloy Electrocatalysis for Direct Oxidation of Methanol in Fuel Cells”, Bulletin of Electrochemistry p348-351(1993)
    58. M. S. Wilson, S. Gottesfeld, “Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes”, J. Appl. Electrochem., Vol. 19 p. 1 (1992).
    59. K. B. Prater, “Polymer Electrolyte Fuel Cells: A Review of Recent Developments”, J. of power sources, vol. 51, p. 129 (1994).
    60. Z. Ogumi, Tohru Kuroe and Zen-Ichiro Takehara, “Gas Permeation In SPE Method-Ⅱ. Oxygen and Hydrogen Permeation through Nafion”, J. Electrochem. Soc., Vol. 132, p. 2601 (1985).
    61. F. Buchi and G. Scherer, “In-Situ Resistance Measurements of Nafion 117 Membranes in Polymer Electrolyte Fuel Cells”, J. Electroanal. Chem., Vol. 404, p. 37 (1996).
    62. A. Biloul, M. Gouerec, G. Savy, S. Scarbeck, and J. Riga, “Oxygen Electrocatalysis under Fuel Cell Conditions: Behaviour of Cobalt Porphyrins and Tetraazaannulene Analogues”, J. Appl. Electrochem., Vol. 26, p. 1139 (1996)
    63. A. Eisenberg, H. L. Yeager, “Perfluorinsted Ionomer Membranes”, ACS Symp. Ser., American Chemical Socirty, Washington DC (1982).
    64. V. N. Fateev, O. V. Archakov, E. K. Lyutikova, L. N. Kulikova V. I. Porembskii, “Water Electrolysis in Systems with Solid Polymer Electrolyte”, Russian J. Electrochem., Vol. 29, p. 702 (1993).
    65. A. Michas and P. Millet, “Metal and Metal Oxides Based Membranes Composites for Solid Polymer Electrolyte Water Electrolysis”, J. Membr. Sci., Vol. 61, p. 157 (1991).
    66. J. Jorissen, “Ion Exchange Membranes as Solid Polymer Electrolytes in Electro-Organic Method to Organic Electrochemistry(XIV)”, J. Electrochemica Acta, Vol. 41, p. 553 (1996).
    67. 陳惠玲,固態高分子電解質電極之製備及其在有機合成上之應用,國立成功大學化工研究所碩士論文(1992)。
    68. S. A. Jaffari and J. C. Pickup, “Novel Hexacyanoferrate(Ⅲ) Modified Carbon Electordes: Application in Miniaturized Biosensors with Potentoal for in vivo Glucose Sensing”, Biosensors & Bioeoectronics, Vol. 11, p. 1167 (1996).
    69. M. A. McRipley and R. A. Linsenmeir, “Fabrication of a Mediated Glucose Oxidase Recessed Microelectrode for the Amperometric Determination of Glucose”, J. Electroanal. Chem., Vol. 414(2), p. 235 (1996).
    70. H. Huang, P. K. Dasgupta, Z. Genfa and J. Wang, “Pulse Amperometric Sensor for the Measurement of Atmospheric Hydrogen Peroxide”, Analytical Chem., Vol. 68(13), p. 2026 (1996).
    71. J. S. Do. and R. Y. Shieh, “Electrochemical Nitrigen Dioxide Gas Sensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators, B37(1-2), p. 19 (1996).
    72. Mahlon S. Wilson and Shimshon Gottesfeld , “High Performance Catalyzed Membranes of Ultra-low Pt Loadings for Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 139, No.2, L.28(1992)
    73. Mahlon S. Wilson, Judith A. Valerio and Shimshon Gottesfeld, “Low Platinum Loading Electrodes For Polymer Electrolyte Fuel Cell Fabricated Using Thermoplastic Ionomers”, Electrochimica Acta, Vol. 40, p355(1995)
    74. 亞太燃料電池 李英正,” -先進電池技術發展與應用-PEMFC的測試與製作” 財團法人自強工業科學基金會九十一年度工業人才培訓計畫講義(2002)
    75. F. Opekar, “Detection of Hydrogen in Air with a Detector Containing a Nafion Membrane Metalized on Both Sides”, J. Electroanal. Chem., Vol. 260, p. 451 (1989).
    76. 陳孟震,以含浸還原法製備PEMFC膜電極組與電池之研究,國立成功大學化工系碩士論文 (2000)。
    77. Makoto Ucjida, Yuko Aoyama, Nobuo Eda, Akira Ohta, “New Preparation Method for Polymer Electrolyte Fuel Cells”, J. Electrochem. Soc., vol. 142, p. 463, (1995).
    78. Makoto Uchida, Yuko Fukuoka, Yasushi Sugawara, Hideo Ohara, and Akira Ohta “Improved Preparation Process of Very-Low-Platinum-Loading Electrodes for Polymer Electrolyte Fuel Cells” J. Electrochem. Soc., Vol. 145 p.3708(1998)
    79. S. J. Shin, J. K. Lee, H. Y. Ha , S. A. Hong, H. S. Chun, I. H. Oh “Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells” Journal of Power Sources 106 p146-152(2002)
    80. V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez “Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells” Journal of Applied Electrochemistry 26 p297-304(1996)
    81. J. M. Song , S. Y. Cha , W. M. Lee.”Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method” Journal of Power Sources, 94 p78-84 (2001)
    82. Makoto Uchida, Yuko Aoyama, Nobuo Eda, and Akira Ohta “New Preparation Method for Polymer-Electrolyte Fuel Cells”, J. Electrochem. Soc., Vol. 142 p463(1995)
    83. Young-Gab Chun, Chang-Soo Kim. Dong-Hyun Peck, Dong-Ryul Shin “Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes” Journal of Power Sources 71 p174-178(1998)
    84. T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”, J. Electrohem. Soc. Vol. 136, p. 1594 (1989).
    85. M. Dawn Bernardi, Verbrugge Mark W., “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., vol. 139, p. 2477, (1992).
    86. Young Tai Kho and Supramaniam Srinivasan, “Mass Transport Phenomens in Proton Exchange Membrane Fuel Cells Using O2/He, O2/Ar and O2/N2 Mixture Ⅱ Theoretical Analysis”, J. Electrochem. Soc., vol. 141, p. 2089 (1994).
    87. Thomas A. Zawodzinski, Jr., Charles Derouin, Susan Radzinski, Ruth J. Sherman, Van T. Smith, Thomas E. springer, Shimshon Gottesfeld, “Water Uptake by and Transport through Nafion 117 Membrane”, J. Electrochem. Soc., vol. 140, p. 1041, (1993).
    88. Junbom Kim, Seong-Min Lee, Supramaniam Srinivasan, “Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation”, J. Electrochem. Soc., vol. 142, p. 2670 (1995).
    89. Junbom Kim, Seong-Min Lee, Supramaniam Srinivasan, “Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation”, J. Electrochem. Soc., vol. 142, p. 2670 (1995).
    90. S. Srinivasan, E. A. Ticianelli, C. R. Derouin and A. Redondo, J. Power Source, vol. 22, p. 359, (1988).
    91. Allen J. Bard, Larry R. Faulkner, “electrochemical methods fundamentals and applications”, JOHN WILEY & SONS, INC., p27(2001)
    92. John S. Newman, “Electrochemical systems”, Prentice-Hall, Inc.,p380(1991)
    93. Shawn D. Lin and Ting-Chou Hsiao “Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells”, J. Phys. Chem. Nol.103 p97-103(1999)
    94. T. E. Shubina, M. T. M. Koper “Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces” , Electrochimica Acta Vol.47 p3621-3628(2002)
    95. Meng-Sheng Liao, Carlos R. Cabrera, Yasuyuki Ishikawa “A theoretical study of CO adsorption on Pt, Ru and Pt-M (M=Ru, Sn, Ge) clusters”, Surface Science Vol.445 p267-282(2000)
    96. R. Ianniello, V. M. Schmidt, U. Stimming, J. Stumper and A. Wallau “CO Adsorption and Oxidation on Pt and Pt-Ru Alloys: Dependence on Substrate Composition” , Electrochimica Acta, Vol.39 p1863-1869(1994)
    97. W. F. Lin, T. Iwasita, and W. Vielstich “Catalysis of CO Electrooxidation at Pt, Ru, and PtRu Alloy. An in Situ FTIR Study” , J. Phys. Chem. Vol.103 p3250-3257(1999)
    98. Hubert A. Gasteiger, Nenad M. Markovic, and Philip N. Ross, Jr. “H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixtures at 62°C”, J. Phys. Chem. Vol.99 p16757-16767(1995)
    99. S. Srinivasan, E. A. Ticianelli, C. R. Derouin and A. Redondo, J. Power Source, vol. 22, p. 359, (1988).
    100. C. M. Brett, Ana M. O. Breet, “Electrochemistry-Principles, Methods, and Applications”, Oxford, New York, p. 405 (1993).
    101. A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and applications”, Wiley, New York, (2001).
    102. R. De Levie, “On Porous Electrodes in Electrolyte Solution-Ⅳ”, Electrochim. Acta, vol. 9, p. 1231, (1964).
    103. R. De Levie, “On Porous Electrodes in Electrolyte Solution”, Electrochim. Acta, vol. 8, p. 751, (1963).
    104. I. D. Raistric, “Impedance Studies of Porous Electrodes”, Electrochim. Acta, vol. 35, p.1579, (1990).
    105. M. Eikerling, A. A. Kornyshev, “Electrochemical Impedance of the Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells”, J. Electroanal. Chem. Soc.,vol. 475, p. 107, (1999).
    106. John R. Scully, David C. Silverman, and Martin W. Kendig, “Electrochemical impedance: Analysis and Interpretation”, ASTM, Philadelphia, p.140, (1993)
    107. Epelboin, I., Gabrelli, C., Keddam, M., and Takenouti, H., “The study of passivation process by the electrode impedance analysis”, in comprehensive treatise of electrochemistry, vol. 4, plenum Press, New York, p.151, (1981).
    108. 林昱志,質子交換膜型燃料電池阻抗之分析,國立成功大學化工系碩士論文 (2001)。

    下載圖示 校內:2006-08-11公開
    校外:2006-08-11公開
    QR CODE