| 研究生: |
劉冠汶 Liu, Kuan-Wen |
|---|---|
| 論文名稱: |
運用被動時間反轉法及聲線法建立水中聲源定位之方法 Underwater Sound Source Localization Based on Passive Time-Reversal Mirror and Ray Theory |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 水中聲源定位 、時間反轉法 、聲線法 、資料浮標 、水中環境噪音 |
| 外文關鍵詞: | Underwater sound source localization, Time-reversal mirror, Ray theory, Data buoy, Underwater ambient noise |
| ResearchGate: | https://www.researchgate.net/profile/Kuan-Wen-Liu-2 |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣四周環海且海域環境複雜,水中環境噪音難以估算。水中環境噪音是影響聲納偵蒐效能的重要指標,現今臺灣地理戰略位置越顯重要,水中環境噪音之蒐集勢在必行。過去蒐集水中環境噪音的方式為在海底布放水聽器和電纜,然而此方法所費不貲,且儀器不易維護。因此,本研究以開發一座具成本競爭力且能夠長期作業的水中聲音監測系統(USMS)為前提,加上即時回傳所量得的水中環境噪音頻譜,來進行後續的研究。
本研究將一支水聽器加掛於臺灣澎湖七美與屏東南灣兩座資料浮標上,並長期收錄水中環境噪音。透過分析水中環境噪音的聲壓資料與浮標上原有的波浪儀所量測到的波高資料,則可得到該海域波高與水中環境噪音聲壓級(SPL)之關係。臺灣現運作中的二十幾座資料浮標上,大多有配備波浪儀,卻很少裝設水聽器。因此,透過本研究得到的波高與水中環境噪音變化之關係,可以輕易推估目標海域的SPL。
成功建立USMS後,本研究將原本的一支水聽器,增加為四支水聽器,組成垂直陣列,並應用被動時間反轉法與聲線法,建立水中聲源二維及三維定位的方法。二維定位方法中,利用一含有4支水聽器的垂直陣列收錄水中聲源發出的訊號,再利用基於聲線法發展出的BELLHOP程式,計算出水聽器收到的聲波經時間反轉後反向發出所產生的聲壓場,基於時間反轉法反向聚焦(retrofocus)的特性,聲壓最大處即為聲源位置。由於BELLHOP程式的限制,此種方法只能定位出聲源的深度及其與垂直水聽器陣列間的距離,而無法求出方位。本研究在拖航水槽及屏東縣鹽埔漁港外海與小琉球東南方海域進行聲源二維定位的實驗,試驗結果顯示利用本研究所發展的方法可得到二維定位不錯的結果。在聲源三維定位的方法上,本研究使用含垂直及水平陣列的十字形水聽器陣列。由於聲線法中二維圓柱座標 r-z 平面上的聲線方程式與三維直角座標中 x-y 平面上的聲線方程式兩者的型式完全相同;因此,先由垂直陣列上水聽器所接收到的聲音訊號,求出聲源的二維座標 (r, z)。如同上述二維定位方法,也利用BELLHOP程式,由水平陣列上水聽器所接收到的聲音訊號,計算 x-y 平面的聲場,求出聲源在x-y平面上的座標 (x, y)。由上述結果,即可得到水中聲源之三維位置 (x, y, z)。本研究所提出的水中聲源三維定位方法,經拖航水槽試驗證實此方法的可行性及準確性,後續可於實海域中進一步測試其實用性。
Taiwan is located in a crucial strategic area surrounded by the quick-changing ocean, and the neighboring underwater acoustic environment remains elusive. It is common to place hydrophones and cables at the seabed to detect sound signals, but the cost is enormous, and the instruments are not easy to maintain. This study aims to develop a cost-effective underwater sound monitoring system (USMS) to obtain long-term and real-time underwater ambient noises and their spectra. The USMS is implemented by installing a hydrophone to a buoy that is usually used to obtain long-term and real-time oceanic and meteorological data. Furthermore, by replacing the single hydrophone with a vertical hydrophone array or a cross-shaped array, the USMS can be used to obtain the real-time 2-D or 3-D position of an underwater sound source.
In this study, a relation between wave height and underwater sound pressure level (SPL) is obtained in the waters near the southwestern coast of Taiwan. Based on this relation, once the wave height in specific waters is known, the corresponding underwater ambient noises in terms of SPL can be derived.
This study proposes techniques for 2-D and 3-D localizations of an underwater sound source based on the passive time-reversal method (TRM) and acoustic ray method. For the 2-D localization, a vertical array with four hydrophones is used to collect the sound signals emitted from a sound source. The ray-tracing code BELLHOP is then used to determine the acoustic pressure field generated by the time-reversed signals received by the hydrophones. Based on the retrofocus characteristic of the TRM, the position with the maximum pressure is taken as the location of the sound source. Laboratory experiments performed in a towing tank and the field tests conducted in the offshore regions off Yanpu Harbor and Small Liuqiu Island, Pingtung County, Taiwan, reveal that the estimated source location is close to the actual location. For the 3-D localization, a cross-shaped hydrophone array consisting of a vertical array and a horizontal array is used to collect sound signals. Because the 3-D ray equations in the x-y plane of the Cartesian coordinates have the same form as the 2-D ray equation in the r-z plane of the cylindrical polar coordinates, after the 2-D position of the source is determined from the signals collected by the vertical hydrophones, the BELLHOP code is used to determine the pressure field in the x-y plane from the signals collected by the horizontal hydrophones, and the position with maximum pressure is set as the location of the source. In this way, the 3-D location of the source is obtained. Experiments conducted in a towing tank reveal that the estimated 3-D source location is close to the actual 3-D source location.
1. Bavu, É., Berry, A., 2009. High-Resolution Imaging of Sound Sources in Free Field Using a Numerical Time-Reversal Sink. Acta Acustica united with Acustica 95 (4), 595-606.
2. Bucker, H., 1994. Matched‐field tracking in shallow water. J. Acoust. Soc. Am. 96 (6), 3809-3811.
3. Bucker, H., Baxley, P., 1999. Automatic matched-field tracking with table lookup. J. Acoust. Soc. Am. 106, 3226-3230.
4. Buckingham, M.J., Potter, J.R., Epifanio, C.L., 1996. Seeing Underwater with Background Noise. Scientific American 274, 86-90.
5. Byun, G., Song, H., Kim, J., 2018. Virtual Source Array-Based Multiple Time-Reversal Focusing. Applied Sciences 8 (1).
6. Carter, G.C., 1979. Passive ranging errors due to receiving hydrophone position uncertainty. J. Acoust. Soc. Am. 65 (2), 528-530.
7. Červený, V., 2010. Seismic Ray Theory. Cambridge University Press, Cambridge.
8. Chen, Y., 2010. Studies on the Technology of Passive Time-Reversing Location. National University of Defense Technology, P.R. China, p. 63.
9. Chiu, Y.S., Shyue, S.W., Lin, C.H., Lou, J.Y., Hsieh, M.M., Tang, D.C., Lin, Y.W., 2019. Development of the technology for monitoring the soil stability in the area of offshore wind turbines and its applications in the harbor area. J. Harbor Technology 114, 32-39.
10. Collins, M.D., 1993. A split‐step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93 (4), 1736-1742.
11. Collins, M.D., 1994. Generalization of the split‐step Padé solution. J. Acoust. Soc. Am. 96 (1), 382-385.
12. Cooley, J.W., Tukey, J.W., 1965. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19 (90), 297-301.
13. Cox, H., Zeskind, R., Owen, M., 1987. Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech, and Signal Processing 35 (10), 1365-1376.
14. Dehnavi, S.M., Ayati, M., Zakerzadeh, M.R., 2017. Three dimensional target tracking via Underwater Acoustic Wireless Sensor Network. 2017 Artificial Intelligence and Robotics (IRANOPEN), 153-157.
15. del Hougne, M., Gigan, S., del Hougne, P., 2021. Deeply subwavelength localization with reverberation-coded aperture. Physical Review Letters 127 (4), 043903.
16. del Hougne, P., 2020. Robust position sensing with wave fingerprints in dynamic complex propagation environments. Physical Review Research 2 (4), 043224.
17. del Hougne, P., Imani, M.F., Fink, M., Smith, D.R., Lerosey, G., 2018. Precise localization of multiple noncooperative objects in a disordered cavity by wave front shaping. Physical Review Letters 121 (6), 063901.
18. Doong, D.J., Chen, S.H., Kao, C.C., Lee, B.C., Yeh, S.P., 2007. Data quality check procedures of an operational coastal ocean monitoring network. Ocean Engineering 34 (2), 234-246.
19. Dowling, D.R., Song, H.C., 2005. Acoustic time reversal in the Ocean, Sounds in the sea : from ocean acoustics to acoustical oceanography. Cambridge University Press, Cambridge; New York.
20. Du, L., Li, J., Stoica, P., 2010. Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Transactions on Aerospace and Electronic Systems 46 (1), 449-458.
21. Duncan, A.J., Maggi, A.L., 2006. A consistent, user friendly interface for running a variety of underwater acoustic propagation codes, First Australasian Acoustical Societies' Conference. Australian & New Zealand Acoustical Societies, Christchurch, New Zealand, pp. 471-477.
22. Feng, Y., Liao, G., Xu, J., Zhu, S., Zeng, C., 2018. Robust adaptive beamforming against large steering vector mismatch using multiple uncertainty sets. Signal Processing 152, 320-330.
23. Ferguson, B.G., 1989. Improved time-delay estimates of underwater acoustic signals using beamforming and prefiltering techniques. Ieee Journal of Oceanic Engineering 14 (3), 238-244.
24. Ferguson, B.G., Lo, K.W., 2002. Passive ranging errors due to multipath distortion of deterministic transient signals with application to the localization of small arms fire. J. Acoust. Soc. Am. 111 (1), 117-128.
25. Fink, M., Prada, C., 2001. Acoustic time-reversal mirrors. Inverse Problems 17 (1), R1-R38.
26. Fink, M., Prada, C., Wu, F., Cassereau, D., 1989. Self focusing in inhomogeneous media with time reversal acoustic mirrors, Proceedings., IEEE Ultrasonics Symposium, pp. 681-686 vol.682.
27. Fisher, F.H., Simmons, V.P., 1977. Sound absorption in sea water. J. Acoust. Soc. Am. 62 (3), 558-564.
28. Franz, G.J., 1959. Splashes as Sources of Sound in Liquids. The Journal of the Acoustical Society of America 31 (8), 1080-1096.
29. Gerlach, A.A., Flowers, K.D., Johnson, R.B., 1983. Acoustic dispersion in a deep ocean channel. J. Acoust. Soc. Am. 74 (1), 196-203.
30. Gerstoft, P., Gingras, D.F., 1996. Parameter estimation using multifrequency range‐dependent acoustic data in shallow water. J. Acoust. Soc. Am. 99 (5), 2839-2850.
31. Gingras, D.F., Gerstoft, P., 1995. Inversion for geometric and geoacoustic parameters in shallow water: Experimental results. J. Acoust. Soc. Am. 97 (6), 3589-3598.
32. Hodges, R.P., 2010. Underwater Acoustics. Wiley.
33. Huang, C.J., Chen, C.Y., 1999. Diffracted acoustic fields about circular apertures in soft and hard baffles. Acta Acustica united with Acustica 85, 301-311.
34. Huang, C.J., Chwang, A., 1994. Diffraction of acoustic waves by rigid plane baffles. J. Acoust. Soc. Am. 95, 668-680.
35. Ing, R.K., Quieffin, N., Catheline, S., Fink, M., 2005. In solid localization of finger impacts using acoustic time-reversal process. Applied Physics Letters 87 (20), 204104.
36. Isbitiren, G., Akan, Ö.B., 2011. Three-Dimensional Underwater Target Tracking With Acoustic Sensor Networks. IEEE Transactions on Vehicular Technology 60, 3897-3906.
37. Jackson, D.R., Dowling, D.R., 1991. Phase conjugation in underwater acoustics. The Journal of the Acoustical Society of America 89 (1), 171-181.
38. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H., 2011. Computational Ocean Acoustics. Springer New York.
39. Jing, H., Wang, H., Liu, Z., Shen, X., 2018. DOA Estimation for Underwater Target by Active Detection on Virtual Time Reversal Using a Uniform Linear Array. Sensors (Basel) 18 (8).
40. Kao, C.C., Jao, K.C., Doong, D.J., Chen, H.L., Kuo, C.L., 2006. Buoy and radar observation network around Taiwan, OCEANS - Asia Pacific. IEEE, Singapore, pp. 1-7.
41. Kim, J.S., Song, H.C., Kuperman, W.A., 2001. Adaptive time-reversal mirror. The Journal of the Acoustical Society of America 109 (5 Pt 1), 1817-1825.
42. Knudsen, V.O., Alford, R.S., Emiling, J.W., 1948. Underwater ambient noise. Journal of Marine Research 7, 410-429.
43. Kuperman, W.A., Jackson, D.R., 2002. Ocean Acoustics, Matched-Field Processing and Phase Conjugation, in: Fink, M., Kuperman, W.A., Montagner, J.-P., Tourin, A. (Eds.), Imaging of Complex Media with Acoustic and Seismic Waves. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 43-97.
44. Kuperman, W.F., Hodgkiss, W.S., Song, H.C., 1998. Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror. J. Acoust. Soc. Am. 103, 25-33.
45. Liao, K.H., 2017. Development of the Application of the Digital Microphone Array System for the Real-Time Sound Source Localization and Acoustical Holography, Department of System and Naval Mechatronic Engineering. National Cheng Kung University, Tainan, Taiwan.
46. Lin, S.F., Chan, H.C., Fang, Y.Y., Chen, C.F., Tai, J.H., 2011. Underwater acoustic propagation and ambient noise simulations offshore western Taiwan, Proc. 33rd Ocean Eng. Conf. National Kaohsiung University, Taiwan, pp. 787-792.
47. Lin, Y.P., Huang, C.J., Chen, S.H., Doong, D.J., Kao, C.C., 2017. Development of a GNSS buoy for monitoring water surface elevations in estuaries and coastal areas. Sensors 17 (1), 172.
48. Liu, B., Tangy, X., Tharmarasa, R., Kirubarajan, T., Jassemi, R., Halle, S., 2020. Underwater Target Tracking in Uncertain Multipath Ocean Environments. IEEE Transactions on Aerospace and Electronic Systems PP, 1-1.
49. Maggi, A.L., Duncan, A.J., 2006. AcTUP v2.2l (Acoustic toolbox user-interface & post-processor) installation & user guide, University of Technology.
50. Matthews, J.E., 1987. Geoacoustics of the shallow‐water Arctic. The Journal of the Acoustical Society of America 82 (S1), S6-S6.
51. McDonald, V., Klausen, M.B., Briest, S.G., Davison, D.C., Marn, W.H., Olson, J.R., Hursky, P., Porter, M.B., 2003. Real-time Implementation of a Matched-Field Tracker in an Autonomous Submerged Target Trip-Wire System. Biennial Review, SSC San Diego.
52. Medwin, H., Clay, C.S., 1998. Fundamentals of Acoustical Oceanography. Academic Press, San Diego.
53. Millero, F.J., Poisson, A., 1981. International one-atmosphere equation of state of seawater. Deep Sea Research Part A. Oceanographic Research Papers 28 (6), 625-629.
54. Minnaert, M., 2009. XVI.On musical air-bubbles and the sounds of running water. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 16 (104), 235-248.
55. Nystuen, J.A., Ma, B.B., 2005. Passive Acoustic Detection and Measurement of Rainfall at Sea. Journal of Atmospheric and Oceanic Technology 22 (8), 1225-1248.
56. Parvulescu, A., 1995. Matched‐signal processing by the ocean. J. Acoust. Soc. Am. 98 (2), 943-960.
57. Parvulescu, A., Clay, C.S., 1965. Reproducibility of signal transmissions in the ocean. Radio and Electronic Engineer 29, 223-228.
58. Porter, M.B., 2001. The KRAKEN Normal Mode Program. SACLANT Undersea Research Centre, La Spezia, Italy.
59. Porter, M.B., 2011. The BELLHOP manual and user's guide: priminary draft, in: Heat, L., and Sound Research Inc., USA (Ed.).
60. Porter, M.B., Liu, Y.-C., 1994. Finite-element ray tracing. Theoritical and Computational Acoustics 2, 947-956.
61. Prada, C., Wu, F., Fink, M., 1991. The iterative time reversal mirror: A solution to self‐focusing in the pulse echo mode. J. Acoust. Soc. Am. 90 (2), 1119-1129.
62. Roux, P., Kuperman, W.A., 2005. Time reversal of ocean noise. J. Acoust. Soc. Am. 117 (1), 131-136.
63. Sadowski, V., Katz, R., McFadden, K., 1984. Ambient noise standards for acoustic modeling and analysis. Naval Underwater Systems Center.
64. Song, H.C., Kuperman, W.A., Hodgkiss, W.S., 1998. A time-reversal mirror with variable range focusing. The Journal of the Acoustical Society of America 103 (6), 3234-3240.
65. Stotts, S.A., Koch, R.A., Joshi, S.M., Nguyen, V.T., Ferreri, V., Knobles, D.P., 2010. Geoacoustic Inversions of Horizontal and Vertical Line Array Acoustic Data From a Surface Ship Source of Opportunity. Ieee Journal of Oceanic Engineering 35, 79-102.
66. Sukhovich, A., Roux, P., Wathelet, M., 2010. Geoacoustic inversion with two source-receiver arrays in shallow water. The Journal of the Acoustical Society of America 128 (2), 702-710.
67. Sun, L., 2007. Study of Time-reversing Mirror Retrofocusing in Shallow Ocean. Harbin Engineering University, P. R. China, p. 59.
68. Urick, R.J., 1993. Principles of Underwater Sound, 3 ed. McGraw-Hill Book Company.
69. Van Veen, B.D., Buckley, K.M., 1988. Beamforming: a versatile approach to spatial filtering. IEEE ASSP Magazine 5 (2), 4-24.
70. Walker, S.C., Roux, P., Kuperman, W.A., 2009. Synchronized time-reversal focusing with application to remote imaging from a distant virtual source array. The Journal of the Acoustical Society of America 125 (6), 3828-3834.
71. Wu, S.F., Zhu, N., 2010. Locating arbitrarily time-dependent sound sources in three dimensional space in real time. The Journal of the Acoustical Society of America 128 (2), 728-739.
72. Wu, S.F., Zhu, N., 2012. Blind extraction and localization of sound sources using point sources based approaches. The Journal of the Acoustical Society of America 132 (2), 904-917.
73. Wu, S.F., Zhu, N., 2013. Passive sonic detection and ranging for locating sound sources. The Journal of the Acoustical Society of America 133 (6), 4054-4064.
74. Yu, Z.B., Zhao, H.F., Gong, X.Y., Chapman, N.R., 2016. Time-Reversal Mirror-Virtual Source Array Method for Acoustic Imaging of Proud and Buried Targets. Ieee Journal of Oceanic Engineering 41 (2), 382-394.
75. Zel'dovich, Y.B., Pilipetsky, N.F., Shkunov, V.V., 1985. Principles of phase conjugation. Springer, Berlin.
76. Zhang, T., Yang, K., Ma, Y., 2011. Matched-field localization using a virtual time-reversal processing method in shallow water. Chinese Science Bulletin 56 (8), 743-748.
77. Zhang, T.W., Yang, K.D., Ma, Y.L., 2010. The focusing performance with a horizontal time-reversal array at different depths in shallow water. Chinese Physics B 19 (12).
78. Zhu, N., Reza, T., 2019. A modified cross-correlation algorithm to achieve the time difference of arrival in sound source localization. Measurement and Control 52 (3-4), 212-221.
79. Zhu, N.A., Wu, S.F., 2012. Sound Source Localization in Three-Dimensional Space in Real Time with Redundancy Checks. Journal of Computational Acoustics 20 (01).