簡易檢索 / 詳目顯示

研究生: 古盈敏
Gu, Ying-Min
論文名稱: 利用陽性-陰性離子型界面活性劑系統合成囊泡狀及同心球狀中孔洞氧化矽材料
Synthesis of Mesoporous Silica Vesicles and Concentric Spheres by Using Cationic and Anionic Binary Surfactant as Template
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 中孔洞氧化矽囊泡狀結構界面活性劑
外文關鍵詞: mesoporous Silica, vesicle, catanionic surfactant
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界中許多複雜的生物結構皆是藉由高度結合的有機物與無機物複合而成,如生物體中的骨骼、牙齒、和海洋中的矽藻、貝類等。本研究將此觀念應用於合成各種型態的奈米材料,利用有機物組成模板,再使無機物凝結於有機體表面上,經過自組合後形成有機-無機複合材料,期盼能合成出與自然界矽藻相似的型態,並提供仿生材料新的合成方法。
    本研究中以界面活性劑作為有機模板,再和無機物(四乙氧基矽烷或矽酸鈉溶液)結合得到有機-無機複合材料。由界面活性劑化學可知,在陽性-陰性離子型界面活性劑所組成的混合系統中,可藉由調整兩成分間的比例得到柱狀、球狀和層狀等不同結構的微胞,作為具有特殊型態介尺度結構氧化矽材料的模板,而且兩成份因極性端相反電荷的靜電作用形成類似磷脂質的雙尾鏈兩性物,亦可用於模擬細胞膜性質。本研究採用陽離子型界面活性劑 (CnTMAX,n = 12-18,X = Br或Cl)及陰離子型界面活性劑(SDS)以適當比例混合(SDS/CnTMAB莫耳比,S )作為有機模板,和無機物TEOS在反應pH值3.0,40℃的條件下混合攪拌製備囊泡狀中孔洞氧化矽。
    本實驗分成兩個主要部分:一、以C14TMAB為陽離子型界面活性劑所製備之囊泡狀中孔洞氧化矽;二、改變陽離子界面活性劑的碳鏈長以CnTMAB (n = 12, 16, 18)為陽離子型界面活性劑所製備之囊泡狀中孔洞氧化矽。為探討各種實驗變因對氧化矽型態的影響,本實驗將針對諸如界面活性劑間比例、反應的pH值、界面活性劑濃度、TEOS含量、反應溫度等不同變因一一討論,找出產率最佳的合成條件並整合其結果推測出合成機制。
    本研究在適當反應條件下混合各成份,利用簡單的攪拌即可合成出結構完整、粒徑均勻、分散性佳的囊泡狀中孔洞氧化矽,此合成方法簡便且再現性高,因此對於自然界生物成礦的形成機制及理論,具有很高的參考價值。

    In nature many complex biological structures such as skeleton, teeth of organisms and diatoms, shells in the sea are composed of highly joint complexes of organic and inorganic compounds. Applying the concept to synthesizing various forms of nano-materials, this research uses organic compound-based template which enables the condensation of inorganic compounds through molecular self-assembly process and forming of organic-inorganic nano-composite materials, hoping that morphologies similar to natural diatoms could be synthesized and in this way offers a new insight of bionics material.
    In order to acquire organic-inorganic complex material, this experiment utilize surfactant as organic template and combined it with inorganic species (Sodium silicate solution, Tetraethyl orthosilicate).In a mixture of cationic and anionic surfactants (i.e. catanionic surfactant), various micelle structures, including cylindrical micelle, vesicles micelle, as well as laminar structure can not only be obtained by adjusting the molar ratio between the two composites but also used as a template of silica mesostructure which has spectacular morphologies. Mixtures of anionic and cationic surfactants through the electrostatic association of their oppositely charged polar head groups consist of vesicles which are able to mimic the structure of phospholipids (double-chained amphiphiles)and thus be viewed as model systems for fluid interfaces and biomembranes. This research use proportioned mixture(SDS / Cn TMAB molar ratio,S ) of cationic surfactant (CnTMAX, n=12-18, X=Br or Cl) and anionic surfactant (SDS) as the organic template.Inorganic TEOS is then mixed with the template above for preparing vesicle-like mesoporous silica in the condition of pH3, 40℃)
    This experiment can be divided into two main parts:
    1. the vesicle-like mesoporous silica prepared from C14TMAB cationic surfactant.
    2. alteration of carbonic chain length of cationic surfactant, using CnTMAB (n=12,16,18) to synthesize vesicle-like mesoporous silica.
    This experiment focuses on variables including molar ratio and concentrations of different surfactants, pH values and temperatures of the reactions to discover the most productive reaction condition, following by integrating the results and speculating about probable mechanisms.
    This research mix contents in proper circumstances and synthesize vesicle-like mesoporous silica which have intact structures, even diameters and high dispersibility by means of uncomplicated stirring. This method is simple and has high reproducibility and therefore has high reference values in developing mechanisms and theories of biomineralization.

    第一章 緒論 1.1生物成礦( Biomineralization )的發展與研究 1 1.2中孔洞材料 2 1.3界面活性劑簡介 5 1.3.1界面活性劑基本性質 5 1.3.2界面活性劑的分類 5 1.3.3界面活性劑的行為 6 1.3.4陽性-陰性離子型界面活性劑所組成的系統 9 1.4無機物的基本概念 10 1.4.1TEOS性質 10 1.4.2矽酸鹽性質 12 1.5研究成果簡介及未來研究方向 15 第二章 實驗部分 2.1化學藥品 17 2.2樣品的合成方法 18 2.2.1囊泡狀中孔洞氧化矽之合成步驟 20 2.2.2合成囊泡狀中孔洞氧化矽中加入鹽類之合成步驟 21 2.2.3包覆金奈米粒子之囊泡狀中孔洞氧化矽的合成步驟 22 2.2.3.1以C14TMAB為金奈米粒子保護劑合成包覆金奈米粒子之囊泡狀中孔洞氧化矽 22 2.2.3.2以Gelatin為金奈米粒子保護劑合成包覆金奈米粒子之囊泡狀中孔洞氧化矽 23 2.2.4以矽酸鹽為無機物來源合成囊泡狀中孔洞氧化矽之合成步驟 24 2.3產物的鑑定 25 2.3.1光學顯微鏡 25 2.3.2熱重分析儀 (Thermogravimetric analysis;TGA ) 25 2.3.3掃描式電子顯微鏡 (Scanning Electron Microscopy;SEM) 25 2.3.4穿透式電子顯微鏡(Transmission Electron Microscopy ;TEM) 25 2.3.5氮氣等溫吸附-脫附測量 (N2 adsorption/desorption isotherm) 26 2.3.6X-射線粉末繞射光譜 (Powder X-Ray Diffraction) 26 2.3.7X光能量散佈光譜儀(Energy Dispersive Spectrometer ;EDS ) 26 第三章 以C14TMAB — SDS — H2O系統合成囊泡狀中孔洞氧化矽材料之研究 3.1研究動機與實驗設計 27 3.2結果與討論 28 3.2.1囊泡狀中孔洞氧化矽的合成與鑑定 28 3.2.2SDS/C14TMAB莫耳比(S)對囊泡狀中孔洞氧化矽型態的影響 31 3.2.3合成pH值對囊泡狀中孔洞氧化矽型態的影響 33 3.2.4水量對囊泡狀中孔洞氧化矽型態的影響 40 3.2.5TEOS含量對囊泡狀中孔洞氧化矽型態的影響 43 3.2.5.1TEOS含量對中空氧化矽球的影響 43 3.2.5.2TEOS含量對實心氧化矽球的影響 47 3.2.6 使用不同的酸調整反應pH值對囊泡狀中孔洞氧化矽型態的影響 48 3.2.7加入鹽類對囊泡狀中孔洞氧化矽型態的影響 52 3.2.7.1加入鹽類對中空氧化矽球的影響 52 3.2.7.2加入鹽類對實心氧化矽球的影響 57 3.2.8改變合成系統陰離子型界面活性劑對囊泡狀中孔洞氧化矽型態的影響 63 3.2.8.2以STS取代SDS合成囊泡狀中孔洞氧化矽 63 3.2.8.3以MDP取代SDS合成囊泡狀中孔洞氧化矽 64 3.2.9合成溫度對囊泡狀中孔洞氧化矽型態的影響 67 3.2.10包覆金奈米粒子於囊泡狀中孔洞氧化矽內部 68 3.2.10.1以C14TMAB為金奈米粒子保護劑合成包覆金奈米粒子之囊泡狀中孔洞氧化矽 69 3.2.10.2以Gelatin為金奈米粒子保護劑合成包覆金奈米粒子之囊泡狀中孔洞氧化矽 71 3.2.11由實驗結果推測囊泡狀中孔洞氧化矽的合成機制 72 第四章 以CnTMAB — SDS — H2O (n=12,16,18)系統合成囊泡狀中孔洞氧化矽材料之研究 4.1研究動機與實驗設計 75 4.2結果與討論 75 4.2.1囊泡狀中孔洞氧化矽的合成與鑑定 75 4.2.2SDS/C16TMAB莫耳比(S)對囊泡狀中孔洞氧化矽型態的影響 76 4.2.3C16TMAB-SDS系統中合成pH值對囊泡狀中孔洞氧化矽型態的影響 77 4.2.4C16TMAB-SDS系統中水量對囊泡狀中孔洞氧化矽型態的影響 78 4.2.5改變合成系統陽離子型界面活性劑對囊泡狀中孔洞氧化矽型態的影響 79 4.2.5.1以C12TMAB為混合系統之陽離子型界面活性劑合成囊泡狀中孔洞氧化矽 79 4.2.5.2以C18TMAC為混合系統之陽離子型界面活性劑合成囊泡狀中孔洞氧化矽 80 4.2.6以矽酸鈉為無機物來源對囊泡狀中孔洞氧化矽型態的影響 83 第五章 結論 86 參考文獻 88

    1.A. M. B, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D.Stucky, D. E. Morse, Nature 1996, 381, 56.
    2.M. E. Davis, Nature 2002, 417, 813.
    3.N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 2003, 421, 350.
    4.A. Stein, Adv. Mater. 2003, 15, 763.
    5.D. Y. Yu, C. Z. Tian, B. Z. Zhao, Curr. Opin. Solid State Mater. Sci. 2003, 7, 191
    6.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
    7.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
    8.A. H. Heuer, D. J. Fink, V. J. Laraia, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackesll, P. C. Rieke, D. H. Thompson, A. P. Wheeler, A. Veis, A. I. Caplplan, Science, 1992, 255, 1098.
    9.A. Sayari , Chem. Mater., 1996, 8, 1840.
    10.R. Neumann, A. M. Khenkin, Chem. Commun., 1996, 23, 2643.
    11.B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
    12.M. Hartmann, A. Popll , L. Kenvan, J. Phys. Chem., 1996,100, 9906.
    13.A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
    14.C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
    15.C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
    16.C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
    17.Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
    18.W. Wang, S. Xie, W. Zhou and A. Sayari, Chem. Mater. 2004,16, 1756.
    19.J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, D. Zhao, Angew. Chem., 2003, 115 , 3254.
    20.A. Vinu, V. Murugesan, M. Hartmann, Chem. Mater. 2003, 15, 1385.
    21.H. P. Lin, C. Y Tang and C. Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981.
    22.V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141.
    23.H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
    24.J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U Kwon, O. Terasaki, S.–E. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
    25.A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
    26.Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
    27.A. Walcarius, M. Etienne, B. Lebeau, Chem. Mater. 2003, 15, 2161.
    28.T. Yokoi, H. Yoshitake, T. Tatsumi, J. Mater. Chem. 2004, 14 , 951.
    29.J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature, 2000, 48, 289.
    30.E. B. Erlein, Angew. Chem. Int. Ed. 2003, 42, 614.
    31.Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
    32.T. F. Todros, Surfactants, Academic Press : London, 1984.
    33.N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
    34.D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264.
    35.S. Consola, M. Blanzat, E. Perez, J-C. Garrigues, P. Bordat, I. R. Lattes, Chem. Eur. J. 2007, 13, 3039
    36.E. W. Kaler, A. K. Murthy, B.E. Rodriguez, J. A. N. Zasadzinski, Science, 1989, 245, 1371.
    37.L. L. Brasher, K. L. Herrington, E. W. Kaler, Langmuir, 1995, 11, 4267.
    38.M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu, J. A. Zasadzinski, J. Phys. Chem. 1996, 100 , 5874.
    39.K. Tsuchiya, H. Nakanishi, H. Sakai, M. Abe, Langmuir, 2004, 20, 2117.
    40.C. Letizia, P. Andreozzi, A. Scipioni, C. La Mesa, A. Bonincontro, and E. Spigone, J. Phys. Chem. B, 2007, 111, 898
    41.R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 1950, 72, 5705
    42.C. Okkerse, B. G. Linsen, Physical Chem. Aspects of Adsorbents and Catalysis, Academic, New York, 1970
    43.廖文家,“壓克力/二氧化矽混成材料的製備與性質研究”,中原大學化學研究所,2005
    44.鄭舜宇,“以溶膠-凝膠法合成高分子基氧化矽複合材料之研究”,中山大學材料科學研究所,2001
    45.陳俊光,“以溶凝膠法合成PMMA/氧化矽複合材料的光譜、熱性質、與型態分析”,中原大學化學系研究所,2003
    46.Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
    47.D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273,548.
    48.C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301.

    下載圖示 校內:2012-07-08公開
    校外:2014-07-08公開
    QR CODE