簡易檢索 / 詳目顯示

研究生: 洪益智
Hong, Yi-Zhi
論文名稱: 厚膜光阻之微堆疊技術與光學微透鏡製作
Fabrication of the stacked microstructures and optical microlens using thick photoresist
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 119
中文關鍵詞: 積體堆疊微結構熱迴流光學微透鏡厚膜光阻
外文關鍵詞: thick photoresist, integrated stack micro-structures, reflowed, LIGA-like, optical microlens
相關次數: 點閱:93下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要利用LIGA-like製程,將厚膜光阻應用於製作積體堆疊微結構與光學微透鏡陣列上,並結合微電鑄金屬鎳技術與真空澆鑄高分子翻模法,其加工精度可達微米級,產生大量製造的效果。

      在積體化堆疊微結構方面,以高分子與金屬堆疊微結構為主,設計其應用於微噴液元件形成單石噴液系統(Monolithic)上,利用黃光微影對於SU-8負型光阻進行加工,形成微流道與其腔體,再利用JSR THB-130N負型光阻製作金屬鎳噴孔母模,並配合微電鑄技術製作金屬噴孔薄板,探討高分子與金屬層製作時所產生的影響(包括收縮與疏水性)。提出背後曝光技術與微波氧電漿表面處理製程技術改善其堆疊結構,發展相關理論,並比較其優缺點,目前已可實現物理解析度300 dpi~1200 dpi之高分子與金屬堆疊微結構。

      在光學微透鏡陣列製作部份,以熱熔式光阻技術為主,選取負型光阻JSR THB-130N進行研究,探討退火方法與熱分佈對其影響,並利用曲線契合法將透鏡的曲率與圓錐常數求出,再利用光學顯微鏡、曲線契合法及造鏡者公式,對於所製作的微透鏡進行光學量測與分析,最後以LIGA-like製程完成鎳金屬模仁與真空澆鑄高分子翻模出微透鏡陣列,此技術可廣泛的應用在背光板結構、微透鏡陣列、非球面微透鏡與光纖耦合等之光學元件製作。

     This study utilizes the LIGA-like processes which include thick photoresist lithography, micro-electroforming of metal nickel and vacuum casting to mold the polymer materials structures in order to fabricate the integrated stack microstructures and optical microlens arrays. The accuracy of these processes could reach a micrometer scale.

     In the section of integrated stack microstructures, the metal-polymer stacked microstructures can be designed specifically for the application of monolithic micro injecting element. The photolithography technology can also be used to pattern photoresist for the microchannel and chamber, and microelectroforming to fabricate nickel nozzle plate. When fabricating the metal-polymer stack microstructures, the shrinkage of patterned photoresist and the hydrophobic of polymer surface could be observed. The novel processes, the backside exposure method and the polymer surface treatment with micro-wave oxygen plasma, can improve the quality of stack microstructures. It is now tangible to fabricate 300 dpi ~ 1200 dpi of metal-polymer stack microstructures.

     The reflowed polymer technology is used to fabricate high density optical microlens arrays, and JSR THB-130N photoresist can be applied for this research of optical refractive microlens. The different heat treatments affect the reflowed microlens profiles, thus the different optical properties. The curvature and conic constant of microlens can be calculated with the curve fitting method; the spot size of microlens can be measured by optical microscopy devices. Then, the metal nickel mold can be fabricated with electroforming, and the polymer microlens arrays can be molded with the vacuum casting method. The results of reflowed microlens arrays can be applied for backlight structure, aspherical microlens and optical-fiber devices.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號表 XVI 第一章 緒論 1 1-1 前言 1 1-2 LIGA-like技術 3 1-3 積體化堆疊微結構 5 1-3-1 噴墨頭簡介 5 1-3-2 噴墨頭的結構 7 1-3-3 積體化堆疊微結構的發展與應用 9 1-4 折射式微透鏡 14 1-4-1 微光學元件的應用與發展 14 1-4-2 折射式微透鏡的製造技術 15 1-5 研究目標 19 1-5-1 積體化堆疊微結構 19 1-5-2 高密度折射式微透鏡 20 1-6 本文架構 21 第二章 製作積體化堆疊微結構整合技術 22 2-1 黃光微影製程設備 22 2-2 精密微電鑄製程設備 28 2-3 金屬與高分子堆疊微結構技術 33 2-4 積體化堆疊微結構技術討論 34 第三章 背後曝光與氧電漿製程應用於堆疊微結構 41 3-1 背後曝光技術應用於積體化堆疊微結構 41 3-1-1 光罩轉移製程 43 3-1-2 製作高分子噴孔母模 46 3-1-3 製作金屬鎳噴孔 51 3-1-4 背後曝光製作流道腔體 52 3-1-5 微流道腔體蝕刻 55 3-2 氧電漿技術應用於積體化堆疊微結構 60 3-2-1 表面改質理論 60 3-2-2 氧電漿表面處理 64 第四章 利用LIGA-like 製作高密度折射式微透鏡 80 4-1 熱熔法製作高密度微透鏡 81 4-2 曲線契合熱熔式微透鏡 87 4-3 光學理論計算 89 4-4 光學性質檢測 91 4-5 真空澆鑄技術翻模微透鏡陣列 97 第五章 結論與未來展望 111 5-1 結論 111 5-2 未來展望 114 參考文獻 115

    [1] 林郁欣, 胡一君, 周曉宇, 微系統製程技術發展, 科儀新知, 第25卷, 第4期, 民國93年.
    [2] J.P. Baker, D.A. Johnson, V. Joshi and S.J. Nigro, J. Hewlett-Packard, vol. 39, pp. 6-15, 1988.
    [3] C.A. Boeller, T.J. Carlin, P.M. Roeller and S.W. Steinfield, J. Hewlett-Packard, vol. 39, pp. 6-15, 1988.
    [4] Morozumi, Masayuki, Takizawa Akira “Ink Jet Head Having Nozzle Plate Employing Sheet Adhesive Material Having Small Hole for Use in Ink Jet Printers”, U.S. Patent 5,439,728.
    [5] 林暉雄, 微光學元件之設計技術與應用, 科儀新知, 第25卷, 第4期, 民國93年.
    [6] http://www.oes.itri.org.tw/show/, 工研院光電所, “2004年台灣光電大展”
    [7] The Technical Report of Institut fur Mikrotechnik Mainz (IMM), Mainz, Germany.
    [8] Krause, P., Obermeier, E., Wehl, W., “A micromachined single-chip inkjet printhead,” Sensors and Actuators A, volume 53, pp. 405-409, 1996.
    [9] Hue Le, Inkjet printing Tutorial Lecture-IS&T95, 1995.
    [10] Dong-Sing Wuu, Chia-Chi Chan, Ray-Hua Horng, Wei-Chung Lin, S. L. Chiu , Y. Y. Wu, “Structural and electrical properties of Ta-Al thin films by magnetron sputtering,” Applied Surface Science 144-145, pp. 315-318, 1998
    [11] L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, Ph. Renaud, “Simple and Low Cost Fabrication of Embedded Micro-Channels by Using a New Thick-Film Photoplastic,” Solid State Sensors and Actuators, TRANSDUCERS '97 Chicago, Volume: 2 , pp. 1419-1422, 1997
    [12] M. O. Heuschkel, L. Guerin, B. Buisson, D. Bertrand, P. Renaud,“ Buried Microchannels in Photopolymer for Delivering of Solutions to Neurons in a Network,” Sensors and Actuators B, Volume: 48, Issue: 1-3, pp.356-361,1998
    [13] Francis E. H. Tay, J. A. van Kan, F. Watt and W. O. Choong, “A Novel Micro-Machining Method for the Fabrication of Thick-Film SU-8 Embedded Micro-Channels,” J. Micromech. Microeng., Volume: 11, pp. 27-32, 2001.
    [14] F. G. Tseng, Y. J. Chuang and W. K. Lin, “A Novel Fabrication Method of Embedded Micro Channels Employing Simple UV Dosage Control And Antireflection Coating,” Micro Electro Mechanical Systems, pp. 69-72, 2002.
    [15] C. K. Chung, C. J. Lin, C. C. Chen, Y. J. Fang, M. Q. Tsai, “Conbination of thick resist and electroforming technologies for monolithic inkjet application, ” Microsystem Technologies, 10, pp. 462-466, 2004.
    [16] 張維安、韓格理、潘美玲, “台灣半導體產業的競爭力,” http://www.cc.nctu.edu.tw/~cpsun/chang-weian-global.htm
    [17] http://home.kimo.com.tw/charon167/science_page/science12.htm
    [18] 姜燮堂, 光學塑膠元件, http://www.ctnbank.com.tw/ctb_4_4/upload/ 145_05.pdf
    [19] Zoran D. Popovic, Robert A. Sprague, and G.A. Neville Connell, “Technique for Monolithic Fabrication of Microlens Arrays,” Appl. Opt, Volume. 27, No.7, pp.1281-1297, 1988.
    [20] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE Photonic Technology Letters, Volume. 6, No.9, pp. 1112-1114, 1994.
    [21] Walter Däschner, Pin Long, and Robert Stein, “General Aspheric Refractive Micro-Optics Fabricated by Optical Lithography Using a High Energy Beam Sensitive Glass Gray-Level Mask,” J. Vac. Sci. Technol. B., Volume 14, No.6, pp.3730-3733, 1996.
    [22] 陳俊明, 李永春, 折射式微透鏡之準分子雷射LIGA製程開發與光學檢測, 國立成功大學機械工程研究所碩士論文, 民國93年.
    [23] 南台灣奈米材料中心, 儀器操作手冊, http://140.116.176.19/ upmain.htm
    [24] James D. Plummer, Michael D. Deal, Peter B. Griffin, “Silicon VLSI Technology Fundamentals, Practice and Modeling,” Prentice Hall, Inc, 2000.
    [25] C. K. Chung, C. J. Lin, L. H. Wu, Y. J. Fang, Y. Z. Hong, “Selection of mold materials for electroforming of monolithic two-layer microstructure,” Microsystem Technologies, 10, pp.467-471, 2004.
    [26] 洪益智, 鍾震桂, 張維哲, “利用背後曝光和電鑄技術製作金屬與高分子的堆疊微結構,” 中國機械工程學會第二十一屆全國學術研討會論文集, pp. 5253-5258, 民國93年.
    [27] Kabseog Kim, Daniel S Park, Hong M Lu, Wooseong Che, Kyunghwan Kim, Jeong-Bong Lee and Chong H Ahn, “A tapered hollow metallic microneedle array using backside exposure of SU-8”, J. Micromech. Microeng. , 14, pp.597-603, 2004.
    [28] Byung-Ho Jo, Linda M. van Lerberghe, Kathleen M. Motsegood, and David J. Beebe, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” Journal of MicroelectroMechanical System, vol. 9, NO. 1, pp. 76-81, 2000.
    [29] Hamaker, H. C. Physica 4, pp. 1058, 1037.
    [30] Fowkes, F. M. J. Phys. Chem. 67, pp. 2538, 1963.
    [31] Van Oss, C. J., Chaudhury, M. K., Good, R. J., Chem. Rev. 88, pp. 927, 1988.
    [32] Fischer, Robert Edward, “Optical Systems Design,” McGraw-Hill, USA 2000.

    下載圖示 校內:2007-06-21公開
    校外:2008-06-21公開
    QR CODE