簡易檢索 / 詳目顯示

研究生: 薛元毓
Hsueh, Yuan-Yu
論文名稱: 甲殼素表面塗佈對脂肪幹細胞形成球狀體及神經分化潛力之探討
Spheroid formation and neural induction in adipose derived stem cell by chitosan surface coating
指導教授: 林聖哲
Lin, Sheng-Che
吳佳慶
Wu, Chia-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 41
中文關鍵詞: 神經分化,脂肪幹細胞,甲殼素,神經球體
外文關鍵詞: neural induction,adipose stem cell,chitosan,neurosphere
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在幫助神經生長的治療中,幹細胞療法被視為是其中極具吸引力的一環,尤其是在一些神經退化疾病以及脊椎受傷的病人身上。成體脂肪幹細胞(ADSCs)屬於間葉幹細胞中的一員,與其他類型的幹細胞相比,其具有一下幾種優勢:可大量取得、較不會有倫理上的考量以及取得的方法上對病人較不具有侵犯性也較少傷害 成體脂肪幹細胞已被證實與骨髓幹細胞具有同等能力之多分化潛力,其並可被分化為多樣的中胚層細胞如脂肪、軟骨與骨頭細胞。除此之外,脂肪幹細胞亦被發現也具有跨胚層分化為神經細胞的可行性,這樣潛在的潛力使得脂肪幹細胞在使用成體幹細胞療法治療神經退化型疾病或是脊椎受傷的病人上具有一定的前景。在組織再生工程的發展上,使用各式各樣的生物材料來當作細胞鷹架以達成三度立體空間培養一直是很大的考量點。甲殼素是一種從幾丁質所萃取出來的天然多醣類,在基礎研究中常常被拿來做為輔助神經再生的生物材料,因其具有導引神經生長以及增進神經幹細胞存活的效果。除此之外甲殼素可為其他不同種類的細胞提供三度立體空間培養的介質,但尚無脂肪幹細胞之相關研究。此研究中我們將人類脂肪幹細胞種植在甲殼素表面上,根據其細胞存活而得到最佳的種植密度以及時間。自動形成之球狀體會表現神經細胞表面標記,同時隨著球體打散再植(Replating)的方式所形成之一級、二級與三級球體其所具有之神經分化潛力會隨之增加,此一將人體脂肪幹細胞種植在甲殼素表面以誘導出神經分化潛力之研究將有助於未來臨床上合併使用自體脂肪幹細胞與甲殼素通道以促進神經再生的相關應用。

    The application of stem cells to facilitate nerve regeneration appeals to have great therapeutic potential in patients of neurodegenerative disease or spinal cord injury. The adipose derived stem cells (ADSC), a subset of mesenchymal stem cells, possess great advantage of abundant cell amount, less ethical issue, minimal invasive procedure when compared to other sources. The ADSCs have been proven similar potentials of multipotency comparing to bone marrow stem cells and can be differentiated into adipose, cartilage and bone as well. Moreover, the ability of trans-differentiation from ADSCs into neural lineage that provides a scope of post-natal stem cell therapy for the neurodegenerative disease or spinal cord injury. The three dimensional culture in tissue engineering using various biomaterials as scaffolds has drawn a great concern. Chitosan, a naturally derived polysaccharide from chitin, is widely studied to facilitate nerve regeneration using chitosan neural tube to guide the direction of nerve regeneration and to improve survival of neural stem cells. In addition, chitosan also serves as a three-dimensional culture substrate to form sphere in various cell types, but remains unexplored in ADSC. In this study, we seed the human ADSC on chitosan coated surface and obtained the optimization of the seeding density and timing of harvest according to cell viability assay. Spontaneous formation of sphere arises with expression of neural lineage markers (nestin, NFH and GFAP). The neural induction potentials are also provoked by replating protocol from the primary to the tertiary sphere. The effect of neural induction in human ADSC on chitosan coated surface may avail of future clinical implication to facilitate nerve regeneration using chitosan channel seeded with autologous ADSC.

    Abstract I 中文摘要 II Acknowledgement III Table of content IV List of tables VI List of figures VII Abbreviations VIII Introduction Nerve injury 1 ADSC 1 Chitosan 3 Aim of the study 5 Material and Methods Preparation of chitosan coated plate 6 ADSC isolation and processing 6 Cell viability measurement 7 Immunofluorescent staining 8 Western blot 8 Quantitative PCR 9 Statistics 9 Result Spontaneous sphere formation from multipotent ADSCs on chitosan coating plate 10 Induction of neural lineage potential in chitonsan coating-induced ADSC sphere 11 Replating of the sphere enhance neural expression 13 Discussion 15 Conclusion 21 Reference 22

    Amaral, I. F., P. SampaioM. A. Barbosa (2006). Three-dimensional culture of human osteoblastic cells in chitosan sponges: the effect of the degree of acetylation. J Biomed Mater Res A 76(2): 335-46.
    Anghileri, E., S. Marconi, A. Pignatelli, P. Cifelli, M. Galie, A. Sbarbati, M. Krampera, O. BelluzziB. Bonetti (2008). Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev 17(5): 909-16.
    Bates, R. C., N. S. EdwardsJ. D. Yates (2000). Spheroids and cell survival. Crit Rev Oncol Hematol 36(2-3): 61-74.
    Bjorklund, L. M., R. Sanchez-Pernaute, S. Chung, T. Andersson, I. Y. Chen, K. S. McNaught, A. L. Brownell, B. G. Jenkins, C. Wahlestedt, K. S. KimO. Isacson (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99(4): 2344-9.
    Bunnell, B. A., J. YlostaloS. K. Kang (2006). Common transcriptional gene profile in neurospheres-derived from pATSCs, pBMSCs, and pNSCs. Biochem Biophys Res Commun 343(3): 762-71.
    Chen, M. H., Y. H. Hsu, C. P. Lin, Y. J. ChenT. H. Young (2005). Interactions of acinar cells on biomaterials with various surface properties. J Biomed Mater Res A 74(2): 254-62.
    Chen, Y. H., I. J. WangT. H. Young (2009). Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Eng Part A 15(8): 2001-13.
    Desoize, B. (2000). Contribution of three-dimensional culture to cancer research. Crit Rev Oncol Hematol 36(2-3): 59-60.
    Feng, Z. Q., X. Chu, N. P. Huang, T. Wang, Y. Wang, X. Shi, Y. DingZ. Z. Gu (2009). The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials 30(14): 2753-63.
    Gimble, J. M., A. J. KatzB. A. Bunnell (2007). Adipose-derived stem cells for regenerative medicine. Circ Res 100(9): 1249-60.
    Gingras, M., I. ParadisF. Berthod (2003). Nerve regeneration in a collagen-chitosan tissue-engineered skin transplanted on nude mice. Biomaterials 24(9): 1653-61.
    Hung, C. H., Y. L. LinT. H. Young (2006). The effect of chitosan and PVDF substrates on the behavior of embryonic rat cerebral cortical stem cells. Biomaterials 27(25): 4461-9.
    Jiang, X., H. Dai, K. W. Leong, S. H. Goh, H. Q. MaoY. Y. Yang (2006). Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. J Gene Med 8(4): 477-87.
    Kang, S. K., D. H. Lee, Y. C. Bae, H. K. Kim, S. Y. BaikJ. S. Jung (2003). Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183(2): 355-66.
    Kang, S. K., L. A. Putnam, J. Ylostalo, I. R. Popescu, J. Dufour, A. BelousovB. A. Bunnell (2004). Neurogenesis of Rhesus adipose stromal cells. J Cell Sci 117(Pt 18): 4289-99.
    Kang, S. K., M. J. Shin, J. S. Jung, Y. G. KimC. H. Kim (2006). Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 15(4): 583-94.
    Li, X., Z. YangA. Zhang (2009). The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 30(28): 4978-85.
    Li, X., Z. Yang, A. Zhang, T. WangW. Chen (2009). Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials 30(6): 1121-32.
    Lin, S. J., W. C. Hsiao, S. H. Jee, H. S. Yu, T. F. Tsai, J. Y. LaiT. H. Young (2006). Study on the effects of nylon-chitosan-blended membranes on the spheroid-forming activity of human melanocytes. Biomaterials 27(29): 5079-88.
    Lin, S. J., S. H. Jee, W. C. Hsaio, S. J. LeeT. H. Young (2005). Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials 26(12): 1413-22.
    Lindvall, O., Z. KokaiaA. Martinez-Serrano (2004). Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10 Suppl: S42-50.
    Liu, T. M., M. Martina, D. W. Hutmacher, J. H. Hui, E. H. LeeB. Lim (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25(3): 750-60.
    Mao, J. S., H. F. Liu, Y. J. YinK. D. Yao (2003). The properties of chitosan-gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials 24(9): 1621-9.
    McDonald, J. W., X. Z. Liu, Y. Qu, S. Liu, S. K. Mickey, D. Turetsky, D. I. GottliebD. W. Choi (1999). Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5(12): 1410-2.
    Nagase, T., D. Matsumoto, M. Nagase, K. Yoshimura, T. Shigeura, M. Inoue, M. Hasegawa, M. YamagishiM. Machida (2007). Neurospheres from human adipose tissue transplanted into cultured mouse embryos can contribute to craniofacial morphogenesis: a preliminary report. J Craniofac Surg 18(1): 49-53; discussion 60-1.
    Nomura, H., T. Zahir, H. Kim, Y. Katayama, I. Kulbatski, C. M. Morshead, M. S. ShoichetC. H. Tator (2008). Extramedullary chitosan channels promote survival of transplanted neural stem and progenitor cells and create a tissue bridge after complete spinal cord transection. Tissue Eng Part A 14(5): 649-65.
    PA, S.S. A (1991). Biomedical applications of high purity chitosan. Water soluble polymers: synthesis, solution properties and applications. S. SW, C. CL and B. GB. Washington DC, American Chemical Society: 430-445.
    Pabari, A., S. Y. Yang, A. M. SeifalianA. Mosahebi (2010). Modern Surgical Management of Peripheral Nerve Gap. J Plast Reconstr Aesthet Surg.
    Radtke, C., B. Schmitz, M. Spies, J. D. KocsisP. M. Vogt (2009). Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci.
    Ruijs, A. C., J. B. Jaquet, S. Kalmijn, H. GieleS. E. Hovius (2005). Median and ulnar nerve injuries: a meta-analysis of predictors of motor and sensory recovery after modern microsurgical nerve repair. Plast Reconstr Surg 116(2): 484-94; discussion 495-6.
    Safford, K. M., K. C. Hicok, S. D. Safford, Y. D. Halvorsen, W. O. Wilkison, J. M. GimbleH. E. Rice (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294(2): 371-9.
    Sato, T., T. IshiiY. Okahata (2001). In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22(15): 2075-80.
    Schwab, M. E. (2002). Repairing the injured spinal cord. Science 295(5557): 1029-31.
    Takezawa, T. (2003). A strategy for the development of tissue engineering scaffolds that regulate cell behavior. Biomaterials 24(13): 2267-75.
    Tomihata, K.Y. Ikada (1997). In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7): 567-75.
    Verma, P., V. Verma, P. RayA. R. Ray (2007). Formation and characterization of three dimensional human hepatocyte cell line spheroids on chitosan matrix for in vitro tissue engineering applications. In Vitro Cell Dev Biol Anim 43(10): 328-37.
    Walsh, S.R. Midha (2009). Use of stem cells to augment nerve injury repair. Neurosurgery 65(4 Suppl): A80-6.
    Wang, Y. C., M. C. Lin, D. M. WangH. J. Hsieh (2003). Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24(6): 1047-57.
    Xu, Y., Z. Liu, L. Liu, C. Zhao, F. Xiong, C. Zhou, Y. Li, Y. Shan, F. PengC. Zhang (2008). Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci 9: 21.
    Yoshimura, H., T. Muneta, A. Nimura, A. Yokoyama, H. KogaI. Sekiya (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327(3): 449-62.
    Zahir, T., H. Nomura, X. D. Guo, H. Kim, C. Tator, C. MorsheadM. Shoichet (2008). Bioengineering neural stem/progenitor cell-coated tubes for spinal cord injury repair. Cell Transplant 17(3): 245-54.
    Zuk, P. A., M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. BenhaimM. H. Hedrick (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12): 4279-95.
    Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. LorenzM. H. Hedrick (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2): 211-28.

    下載圖示 校內:2012-08-02公開
    校外:2012-08-02公開
    QR CODE