簡易檢索 / 詳目顯示

研究生: 陳勁甫
Chen, Chin-fu
論文名稱: 59Co核磁共振研究熱處理對CoTiSb物理特性的影響
59Co NMR study of the heat treatment effects on the physical properties of CoTiSb
指導教授: 呂欽山
Lue, C. S.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 48
中文關鍵詞: 核磁共振
外文關鍵詞: NMR, half-Heusler
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了瞭解熱效應對CoTiSb的微觀費米面的態密度(DOS)的影響,我們利用59Co NMR光譜去研究了未熱處理(as-prepared sample)及熱處理後(annealed sample)的樣品。經由量測這兩個樣品的77K到300K自旋—晶格鬆弛時間(T1),發現它們具有半金屬的特性,在高溫時具有半導體的激發現象,在低溫時則呈現金屬的特性。低溫時的Korringa constant (1/T1T)和費米面上部分的Co 3d 電子態密度DOS Nd(EF)以及軌道順磁貢獻有關。此次研究的結果清楚的顯示熱處理後樣品具有較低的Nd(EF),此結果造成低溫時具有較高的電阻率,這個結果與其他實驗一致。

    With the aim of providing microscopic evidence for the heat treatment driven the reduction of the Fermi-level density of states (DOS) in the Half-Heusler compound CoTiSb, we performed a comparative study of the as-prepared and annealed samples using 59Co NMR spectroscopy. For both materials, the temperature-dependent spin-lattice relaxation rate (1/T1) exhibit semi-metallic characteristics, with an activated response at high temperatures and metallic behavior at low temperatures. We associated the low-temperature Korringa constant (1/T1T) with the partial Co 3d Fermi-level DOS Nd(EF). Results clearly indicate that the annealed CoTiSb possesses a lower Nd(EF), being consistent with other experimental results.

    簡介 .....................................................................................................8 第一章 實驗儀器..................................................................................10 1.1 Arc樣品製備...................................................................................10 1.2 核磁共振儀.....................................................................................11 第二章 實驗原理..................................................................................14 2.1 Arc運作原理 ...............................................................................14 2.2 NMR理論........................................................................................15 2.2.1 Zeeman effect........................................................................15 2.2.2 共振吸收..............................................................................16 2.2.3 運動方程式..........................................................................17 2.2.4 訊號處理..............................................................................18 2.2.5 spin-echo................................................................................19 2.2.6 T1測量...................................................................................20 2.2.7 Knight-shift奈特位移...........................................................22 2.2.8 spin-lattice relaxation time.....................................................25 第三章 實驗方法..................................................................................27 3.1 樣品製作.........................................................................................27 3.2 CoTiSb 59Co NMR訊號變溫測量..................................................27 3.3 X-Ray................................................................................................30 第四章 分析討論..................................................................................32 4.1 X-ray................................................................................................32 4.2 線型………………………..........................................................34 4.3 Knight-shift奈特位移......................................................................38 4.4 Korringa constant (1/T1T)..............................................................41 第五章 結論..........................................................................................45 參考文獻................................................................................................46

    [1] K. Gofryk, D. Kaczorowski, and T. Plackowski, Phy. Rev. B 75 (2007) 224468
    [2] H. C. Kandpal and C. Felser, J. Phys. D: Appl. Phys. 39 (2006) 776
    [3] C. S. Lue, S. M. Huang, C. N. Kuo, F. T. Huang, and M. W. Chu, New J. Phys. 10 (2008) 083029
    [4] Y. Xia, V. Ponnambalam, S. Bhattacharya, A. L. Pope, S. J. Poon, and T. M. Tritt, J. Phys.: Condens. Matter 13 (2001) 77
    [5] M. Zhou and C. Feng, J. Alloy. Compd. 391 (2005) 194
    [6] T. Sekimoto and K. Kurosaki, J. Alloy. Compd. 407 (2006) 326
    [7] T. Sekimoto and K. Kurosaki, J. Alloy. Compd. 394 (2005) 122
    [8] J. Tobola and J. Pierrez, J. Phys.: Condens. Matter 10 (1998) 1013
    [9] M. Terada, K. Endo, Y. Fujita, T. Ohoyama, and R. Kimura, J. Phys. Soc. Jpn. 29 (1970) 1091
    [10] M. Terada, K. Endo, Y. Fujita, and R. Kimura, J. Phys. Soc. Jpn. 32 (1972) 91
    [11] J. J. Sakurai, Modern quantum mechanics (1994) 307
    [12] J. J. Sakurai, Modern quantum mechanics (1994) 320
    [13] Bloch, Phys. Rev. 70 (1946) 460
    [14] L. Hahn, Phys. Rev. 80 (1950) 580
    [15] E. Fukushima and S. B. W. Roeder, experimental pulse NMR (1981) 20
    [16] C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev. 77 (1950) 852
    [17] N. Bloembergen, Acta Met. 1 (1953) 731; 3 (1955) 74
    [18] A. Abragam, The principles of nuclear magnetism (1961) 355
    [19] A. Narath, J. Appl. Phys. 41 (1970) 1122
    [20] W. Trzebiatowsik, Solid State Nuclear Magnetic Resonance 21 (2002) 53
    [21] C. S. Lue, C. F. Chen, and J. Y. Lin, Phys. Rev. B 75 (2007) 064204
    [22] Yu. Stadnyk, J. Alloy. Compd. 329 (2001) 37
    [23] C. S. Lue, Y. T. Lin, and C. N. Kuo, Phys. Rev. B 75 (2007) 075113
    [24] G. C. Carter, L. H. Bennett, and D. J. Kahan, Metallic shifts in NMR part I (1977)
    73
    [25] C. S. Lue, J. H. Ross Jr, K. D. D. Rathnayaka, D. G. Naugle, S. Y. Wu, and W. H. Li, J. Phys.: Condens. Matter 13 (2001) 1585
    [26] R. E. Webster and L. R. Walker, Phy. Rev. B 9 (1974) 4857
    [27] C. S. Lue, B. X. Xie, and C. P. Fang, Phys. Rev. B 74 (2006) 014505
    [28] H. A. Jahn and E. Teller, Proc. Roy. Soc. A161 (1937) 220
    [29] G.N. Rao, Hyperfine Interactions 7 (1979) 141
    [30] C. S. Lue and S. C. Chen, Phy. Rev. B 79 (2009) 125108
    [31] A. Continenza, T. M. Pascale, F. Meloni, and M. Serra, Japan. J. Appl. Phys. 32 (1993) 240

    下載圖示 校內:立即公開
    校外:2009-06-22公開
    QR CODE