| 研究生: | 陳勁甫 Chen, Chin-fu | 
|---|---|
| 論文名稱: | 59Co核磁共振研究熱處理對CoTiSb物理特性的影響 59Co NMR study of the heat treatment effects on the physical properties of CoTiSb | 
| 指導教授: | 呂欽山 Lue, C. S. | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 理學院 - 物理學系 Department of Physics | 
| 論文出版年: | 2009 | 
| 畢業學年度: | 97 | 
| 語文別: | 中文 | 
| 論文頁數: | 48 | 
| 中文關鍵詞: | 核磁共振 | 
| 外文關鍵詞: | NMR, half-Heusler | 
| 相關次數: | 點閱:68 下載:3 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
為了瞭解熱效應對CoTiSb的微觀費米面的態密度(DOS)的影響,我們利用59Co NMR光譜去研究了未熱處理(as-prepared sample)及熱處理後(annealed sample)的樣品。經由量測這兩個樣品的77K到300K自旋—晶格鬆弛時間(T1),發現它們具有半金屬的特性,在高溫時具有半導體的激發現象,在低溫時則呈現金屬的特性。低溫時的Korringa constant (1/T1T)和費米面上部分的Co 3d 電子態密度DOS Nd(EF)以及軌道順磁貢獻有關。此次研究的結果清楚的顯示熱處理後樣品具有較低的Nd(EF),此結果造成低溫時具有較高的電阻率,這個結果與其他實驗一致。
With the aim of providing microscopic evidence for the heat treatment driven the reduction of the Fermi-level density of states (DOS) in the Half-Heusler compound CoTiSb, we performed a comparative study of the as-prepared and annealed samples using 59Co NMR spectroscopy. For both materials, the temperature-dependent spin-lattice relaxation rate (1/T1) exhibit semi-metallic characteristics, with an activated response at high temperatures and metallic behavior at low temperatures. We associated the low-temperature Korringa constant (1/T1T) with the partial Co 3d Fermi-level DOS Nd(EF). Results clearly indicate that the annealed CoTiSb possesses a lower Nd(EF), being consistent with other experimental results.
[1] K. Gofryk, D. Kaczorowski, and T. Plackowski, Phy. Rev. B 75 (2007) 224468
[2] H. C. Kandpal and C. Felser, J. Phys. D: Appl. Phys. 39 (2006) 776
[3] C. S.  Lue, S. M.  Huang, C. N.  Kuo, F. T.  Huang, and M. W. Chu, New J. Phys. 10 (2008) 083029 
[4] Y. Xia, V. Ponnambalam, S. Bhattacharya, A. L. Pope, S. J. Poon, and T. M. Tritt, J. Phys.: Condens. Matter 13 (2001) 77
[5] M. Zhou and C. Feng, J. Alloy. Compd. 391 (2005) 194 
[6] T. Sekimoto and K. Kurosaki, J. Alloy. Compd. 407 (2006) 326
[7] T. Sekimoto and K. Kurosaki, J. Alloy. Compd. 394 (2005) 122
[8] J. Tobola and J. Pierrez, J. Phys.: Condens. Matter 10 (1998) 1013
[9] M. Terada, K. Endo, Y. Fujita, T. Ohoyama, and R. Kimura, J. Phys. Soc. Jpn. 29 (1970) 1091
[10] M. Terada, K. Endo, Y. Fujita, and R. Kimura, J. Phys. Soc. Jpn. 32 (1972) 91
[11] J. J. Sakurai, Modern quantum mechanics (1994) 307
[12] J. J. Sakurai, Modern quantum mechanics (1994) 320
[13] Bloch, Phys. Rev. 70 (1946) 460
[14] L. Hahn, Phys. Rev. 80 (1950) 580
[15] E. Fukushima and S. B. W. Roeder, experimental pulse NMR (1981) 20
[16] C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev. 77 (1950) 852
[17] N. Bloembergen, Acta Met. 1 (1953) 731; 3 (1955) 74
[18] A. Abragam, The principles of nuclear magnetism (1961) 355
[19] A. Narath, J. Appl. Phys. 41 (1970) 1122
[20] W. Trzebiatowsik, Solid State Nuclear Magnetic Resonance 21 (2002) 53
[21] C. S. Lue, C. F. Chen, and J. Y. Lin, Phys. Rev. B 75 (2007) 064204
[22] Yu. Stadnyk, J. Alloy. Compd. 329 (2001) 37
[23] C. S. Lue, Y. T. Lin, and C. N. Kuo, Phys. Rev. B 75 (2007) 075113
[24] G. C. Carter, L. H. Bennett, and D. J. Kahan, Metallic shifts in NMR part I (1977) 
    73   
[25] C. S. Lue, J. H. Ross Jr, K. D. D. Rathnayaka, D. G. Naugle, S. Y. Wu, and W. H. Li, J. Phys.: Condens. Matter 13 (2001) 1585
[26] R. E. Webster and L. R. Walker, Phy. Rev. B 9 (1974) 4857
[27] C. S. Lue, B. X. Xie, and C. P. Fang, Phys. Rev. B 74 (2006) 014505
[28] H. A. Jahn and E. Teller, Proc. Roy. Soc. A161 (1937) 220
[29] G.N. Rao, Hyperfine Interactions 7 (1979) 141
[30] C. S. Lue and S. C. Chen, Phy. Rev. B 79 (2009) 125108
[31] A. Continenza, T. M. Pascale, F. Meloni, and M. Serra, Japan. J. Appl. Phys. 32 (1993) 240